Design of Low Power Neuro-amplifier Circuit with Miller Compensation Technique for Biomedical Neuro-implantable Devices
Synopsis
Neuro-amplifiers form an integral part of biomedical implantable devices. In this paper, we design a neuro-amplifier circuit with Miller compensation capacitor. The neuro-amplifier design is based on operational transconductance amplifier (OTA) with an active load. In this work, performance of the neuro-amplifier is enhanced by incorporating the Miller compensation technique. Design and simulation of the neuro-amplifier circuit is performed using SPICE simulation software. Body biasing and feedback techniques are imparted to optimize the circuit performance. Simulation results show that the neuro-amplifier circuit has a mid-frequency gain and 3-dB bandwidth of 48dB, and 16kHzrespectively.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.