Experimental Investigation on Emission Characteristics of Diesel-Neem Oil Biodiesel Blended with Nanoparticles in the Diesel-Powered Engine
Synopsis
In the past two decades, the global energy demand has been troubled by uncertainty in two aspects. First, the price of conventional fossil fuels is very expensive, putting a further burden on the economies of importing countries. Second, the primary contributor to the increase in atmospheric carbon dioxide (CO2) as a result of global warming is the burning of fossil fuels. So, we must introduce an alternate fuel that reduces the burden on the economies of importing countries and reduces the emission of harmful gases which cause global warming. Biodiesel is the best alternative to conventional diesel fuel which are both environmentally and economically friendly. For using biodiesel directly into the engine, there is no need for engine modification. Its main benefits include excellent lubricity, high biodegradability, and a lack of sulphur content. In the new era, not only biodiesel but also nanoparticles are widely employed by using their blends to decrease the emission of harmful gases and particles (like unburned hydrocarbons, nitrogen oxides, carbon dioxide, smoke, and many more) into the environment. The emission properties of three fuel series - pure diesel, biodiesel-diesel-TiO2 nanoparticles, and biodiesel-diesel-CeO2 nanoparticles - are examined in this experimental study. The titanium oxide (TiO2) and cerium oxide (CeO2) nanoparticles employed in this experimental inquiry were mixed with the fuel blends using an ultrasonicator at concentrations of 50 ppm, 100 ppm, and 150 ppm, respectively. By using biodiesel-diesel blends with nanoparticles as a fuel in the compression ignition engine, the diesel engine emits less pollutants.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.