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Abstract 

Reinforcement learning is used in applications where there is no correct approach to 

solve the problem. Teaching computers to play games is a complex learning problem 

that mostly depends on the game complexity and representational complexity, which has 

recently seen increased attention towards this field. This paper presents an approach 

using concepts of reinforcement learning to master the game of 2048.  The approach is 

based on Q learning and SARSA (State-Action-Reward-State-Action) which are the most 

popular algorithms in the field of reinforcement learning. The design involves the use of 

neural networks as the function approximation method. Like most deep Q learning 

models, the heart of any reinforcement learning agent is the reward function. In this 

paper reward functions are designed to train the model to learn the best playing moves. 

But in 2048 there are 4 random components, that is, initial configuration of the game, 

addition of random tiles after very move, exploration of the agent and unavailability of 

moves. This paper attempts to provide an approach to solve the issue of inherent 

randomness in 2048. This approach is based on prioritized experience replay where the 

model trains to learn best game-playing strategy from the experiences collected. With 

this approach we achieved maximum tile value of 512. 

Index Terms- Reinforcement learning, Q-learning, Experience Replay, 2048. 

 INTRODUCTION 

Reinforcement Learning is a type of learning mechanism where the agent learns by performing 

tasks which are quantified by rewards. It is used in applications where there is no correct 

approach to solve the problem. For example, in self-driving cars it would be unrealistic to 

program it based on rules instead it should learn to perform best possible actions under 

uncertain circumstances which it learns by getting rewards on performing desirable actions. 

The goal of this project is to build an agent learn to play 2048. The game is played on a 4 × 4 

board as shown in Fig 1. The tiles are either in power of 2 or blank. It starts with a random 

configuration of two tiles consisting of 2s or 4s. Four actions are available: left, right, up and 

down. But not all actions are possible in every game situation and a random tile of 2 or 4 is 
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added after each move. Score is accumulated by merging tiles of same powers by performing 

actions. The goal of the game is to achieve a tile of 2048. 

 
Fig 1: Basic structure of 2048 

The difficulties in this game are initial configurations of the game are random in nature, 

addition of random tiles after very move, explorative nature of the agent during initial phase, 

large state space and unavailability of moves in certain situations. Hence, building a successful 

agent for this game is very difficult. 

 LITERATURE SURVEY 

The most prominent work in this field is done by Google Deepmind [1]. They used deep Q 

learning methods to build an agent that was successful in playing 7 of the Atari 2600 games. 

Their agent was able to surpass human expert-level in three games. The salient feature of their 

project was that they were able to train an agent despite extremely high dimensional input 

(pixels) and no information about the game. There was a successful attempt at learning the 

game 2048 by [2]. They used expectimax optimization and they were able achieve tiles of 8192 

on all most all runs of the game. Their model simply performs maximization over all possible 

moves, followed by expectation over all possible tile spawns (weighted by the probability of 

the tiles, i.e. 10% for a 4 and 90% for a 2).  This is an alternative approach which is not based 

on reinforcement learning but has produced very good results. Another attempt at learning to 

play 2048 was done by [3]. They used Monte-Carlo Tree search strategy to encourage optimal 

decision making during explorative phase , but this turned out be very expensive and did not 

produce successful results. 

 METHOD 

In this section we describe the various algorithms and parameters used in building our agent. 

3.1  State Representation 

This project uses the coded version of the game [4]. Here the game states are represented in 

the form of matrix with each element representing an exponent of 2 as shown in Fig 2. Each 

element is equivalent to a tile in the 4×4 grid of the game. This design choice was made to be 

computationally efficient. The matrix is flattened into a 1-D array which is fed as an input to 
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the neural network.  

 
Fig 2: State representation of 2048 in implementation 

3.1  Algorithms Implemented 

Q learning and SARSA are the fundamental algorithms in the field of reinforcement learning 

which works by maximizing the expected value of the total payoff.   

In Q learning, the agent tries to learn the optimal policy from its history of playing the same 

game previously. In Q learning, the history is the experiences from the previous runs which is 

stored in the format (S0, A0, R0, S1) where S0 indicates the state in which the agent was in and 

A0 represents the action that was taken and R0 is the reward it had received for taking the 

action, while S1 is the state reached due to A0. Q learning is an off policy algorithm, this is 

because Q-learning is learnt via an optimal policy (max Q(s,a)), but its behavior policy is not 

same as the optimal policy, since the behavior policy may take  actions that are explorative that 

is why Q learning is an off policy algorithm. SARSA is learnt via a non-optimal policy (Q(s,a)) 

and its behavior policy is also non optimal and takes  actions that are explorative that is why 

SARSA is called an on-policy algorithm. SARSA stores experiences in the format (S0, A0, R0, 

S1, A1) which is the indicative of the origin of the algorithm’s name.  

These algorithms direct the agent to learn an optimal policy by making it learn a Q function 

which is used for optimal action selection. These algorithms don’t actually specify what the 

agent must do. The agent can make two types of actions: exploitation and exploration. In 

exploitation the agent utilizes the knowledge of current state to take an action that maximizes 

the Q value. While in exploration the agent doesn’t necessarily takes an action that maximizes 

the Q, rather it takes an action other than the one it thinks is the best. This is necessary to 

build a better estimate of the optimal policy. The way exploration and exploitation is 

implemented is by having an agent make a lot of explorative moves in the beginning that is 

when the agent has no idea how to play the game and the unexplored state space is very large. 

This leads to random actions. After much iteration the agent converges to which actions/states 

are better and therefore it would exploit more and build a better estimate of the optimal policy.  

The key strategies to implement this are using ε-greedy method and softmax action selection. 
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In ε-greedy, ε times the agent explores and 1-ε the agent exploits. This gives programmer 

control over the behavior of the agent. But there are two problems with a ε-greedy strategy: 

one is that the actions other than best one are treated equally and a random pick is done on 

them. But it would be preferable to choose one of  the better moves from the remaining 

actions (other than the best), instead of having a random pick. As better moves lead better 

rewards and better game situations and the other is that it adds another random component 

to an inherently random game of 2048. One way to do that is to select action with a probability 

depending on the Q value. Hence we use soft-max action selection. In our implementation we 

use multinomial distribution to sample the action. 

3.2 Experience Replay 

Experience replay is a data structure in which previous moves performed by reinforcement 

learning agent are stored. The experience replay is built via simultaneously appending actions 

performed onto an nd-array, list or even hash maps (based on efficiency). The presence of 

experience replay is what makes reinforcement learning work, that is, it helps de-correlate 

experiences experienced by the agent. From this the list of experiences are randomly sampled 

out and subjected to batch learning, by doing this reinforcement learning agent learns from 

de-correlated experiences and chances of over-fitting are reduced. 

For example: In self-driving cars, suppose the agent in its training phase was trained to drive 

on straight roads 85% of times and turns 15 % of times, if this was used as a dataset to make 

the agent learn, then the agent will always be skewed towards learning to drive on straight 

road, and will also over-fit on patterns of straight road, due to data being biased, but by 

randomly sampling and de-correlation helps us avoid such issues. 

Another advantage of experience replay is, agents get to train on rare experiences more often 

than in normal case of online learning due to random sampling. Experience Replay is 

analogous to a dataset in supervised learning but different in the sense that it is not fixed and 

is constantly updated. We used 3 approaches to implement experience replay: 

In the first approach we stored the actions in the experience replay without differentiating 

on which action belonged to which game. We also randomly sampled experience from the 

experience replay during learn phase. 

In the second approach we stored actions belonging to a particular game run (start to 

finish) in a separate data structure which was then appended to experience replay, during 

learning phase we sampled games randomly and then sequentially appended their actions 

to build batches which are input to the neural network. 

In the third approach we stored actions belonging to a particular game run in a separate 

data structure which was only appended to the experience replay based on a condition , 

That is say a threshold score , This would mean network gets trained on games that have 

score better than the threshold, rest of the procedure is same as in 2 . This idea is called 

prioritized experience replay. 
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3.3 Reward Function 

Heart of reinforcement learning systems is reward function. Reward function quantifies how 

desirable an action taken by the agent. Design of reward function should be in such a way that 

it must be easy for the agent to pick up good game playing strategies, an ideal reward function 

takes an agent making desirable moves towards the goal rather than away from it. Reward 

functions must be designed keeping in mind the tradeoff between intent that is what the agent 

must do and incentive what the agent actually does. 

Example: For example a goal of a robotic arm is to place blocks one over another, if say it 

was rewarded a point for placing one block over another, here the intent is that we want the 

agent to build a stack, while in essence agent can easily place the block and then remove it and 

then again place the block in a loop, technically agent is getting rewarded for this but this is 

not desirable at all. 

In our implementation of the game, we found from personal experience from playing the 

game that placing the maximum tile in corners always leads to higher scores, having more 

number of moves and free tiles available at any point is more desirable, monotonous decreases 

of powers in row and column of the max tile and in order is also desirable and moves that lead 

more number of merges in turn leads to higher scores and free tiles are better. 

Learning rate is 0.009, gamma is 0.9 and algorithm used is Q-learning for all our models 

described in this section. The first reward function gave a consistent increase in reward based 

on the value of the max tile being in the corner. Along with this if the agent was able to 

maintain monotonicity in the particular row or column, it was further rewarded. 

The second reward function used prioritized experience replay in which we stored actions of 

games which has scored more than a threshold set. The rewarding scheme remained the same 

as previous.  

In third reward function, the elements of experience replay were the whole set of actions that 

the agent took in a game instead of individual actions. We randomly sampled the games and 

batched up the actions. This was used for training the neural network. The rewarding scheme 

was the score. 

 RESULTS AND ANALYSIS 

4.1  First Reward Function 

All the reward functions were trained on 35,000 games. The agent partly received the intention 

of this function as mentioned above. It was able to follow the policy to make tiles of 256. This 

was due to the present of large number of free tiles. In most cases, the game got terminated 

very quickly from this state due to the unavailability of free tiles and random tile addition at 

undesirable positions as seen in Fig 3. To increase the lifespan of the game and making the 

agent understand the strategy better, prioritized experience replay was used in the next reward 

function as mentioned in the previous section.  



Game Playing Agent for 2048 using Deep Reinforcement Learning 

 
 

368 ISBN: 978-81-936820-0-5 

Proceedings DOI: 10.21467/proceedings.1 

 

 

Series: AIJR Proceedings 

 

 

 

 
Fig 3: Graph for reward function 1 

4.2  Second Reward Function 

By this method we achieved underwhelming results compared to the previous method as 

shown in the Fig 4. On analysis, we found that the poor performance of this method was due 

to the sampling of the actions randomly from the experience replay. Even though good game 

moves were stored in the experience replay but due to the de-correlation of the strategy that 

was used during the game the network was not able to learn any optimal policy.  

This had an effect on previous method as well. We also concluded that the reward function 

was complicated for the agent to learn the policy when it reached deeper into the game 

(reaching 256). 

 
Fig 4: Graph for reward function 2 
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4.3  Third Reward Function 

To overcome the problems in the previous method we used game score as the reward function 

and bundled actions into games which were then appended to experience replay memory. This 

would retain the in-game policy. We achieved our best results using this method. We increased 

the lifespan of the game which is shown in the Fig 5. 

 
Fig 5: Graph for reward function 3 

4.4  Other Experiments 

Above reward functions were applied on SARSA algorithm. The results were similar. We also 

implemented more complex reward functions which consisted of snake-shaped patterns, 

number of free tiles, number of merges, distance between the same valued tiles. These results 

were not very successful as the agent would get one reward for many factors which the agent 

couldn’t always comprehend.  

 CONCLUSION 

Although our initial goal was to master the game 2048, which we weren’t able to achieve, all 

of our models achieved max-tile of 512.We reflect on what lead to such outcomes and why 

2048 was not mastered. Our agent learned to make the tiles of 128 and 256 very easily, during 

this phase the agent played the game optimally by having largest tile in the corner and it also 

had monotonous decrease in the tile power in both row and column of the max-tile. We 

believe the reason the agent mastered this strategy was due to availability of large number of 

free tiles due to which random move done at this stage is recoverable in terms of strategy 

learnt, but as the agent progressed to make tiles of higher value like 1024 and 512 it struggled. 

This is because there were very few free tiles available and number of moves available was also 
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very small, due to which even one explorative move at this stage or placement of a random 

tile in an undesirable position ruined the game strategy which leads to early game termination.  

This is an interesting project, due to its inherent randomness fitting it into reinforcement 

learning methods is difficult, this requires more research into optimal reward function which 

would make the agent learn the game strategy and also learn expectation over randomness.   

 FUTURE SCOPE 

Here are few things which we believe might help get better results, than what we have 

achieved. Clipping the rewards between -1 to +1 [1], storing experiences in exponential 

manner based on game scores, that is storing actions that lead to better scores based on total 

score achieved, so idea is to set certain limits on score proportional to number of iteration 

such that agent would only store all experiences better than the limit set. It is actually found 

that as we go deeper into the game, the number of available moves decrease but also number 

of optimal moves comes down (only 2 moves in most cases) and this is dependent on where 

max-tile is placed. So designing a reward function such that it takes into account the reduced 

optimal moves as we go deeper into the game (512 and above) can help. 

One alternative is usage of dueling Q-architecture instead of classic Q-learning. Also, there 

can be reduction in the overestimation of the classic Q-learning algorithm. Doubling Q-

learning algorithm can be used. 
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