

© 2018 Copyright held by the author(s). Published by AIJR Publisher in Proceedings of the 3rd National Conference on

Image Processing, Computing, Communication, Networking and Data Analytics (NCICCNDA 2018), April 28, 2018.

This is an open access article under Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)

license, which permits any non-commercial use, distribution, adaptation, and reproduction in any medium, as long as the

original work is properly cited. ISBN: 978-81-936820-0-5

Game Playing Agent for 2048 using Deep Reinforcement

Learning

Varun Kaundinya, Shubham Jain, Sumanth Saligram, C. K. Vanamala*, Avinash B

NIE, Mysuru

DOI: https://doi.org/10.21467/proceedings.1.57

* Corresponding author email: ckvanamala@nie.ac.in

Abstract

Reinforcement learning is used in applications where there is no correct approach to

solve the problem. Teaching computers to play games is a complex learning problem

that mostly depends on the game complexity and representational complexity, which has

recently seen increased attention towards this field. This paper presents an approach

using concepts of reinforcement learning to master the game of 2048. The approach is

based on Q learning and SARSA (State-Action-Reward-State-Action) which are the most

popular algorithms in the field of reinforcement learning. The design involves the use of

neural networks as the function approximation method. Like most deep Q learning

models, the heart of any reinforcement learning agent is the reward function. In this

paper reward functions are designed to train the model to learn the best playing moves.

But in 2048 there are 4 random components, that is, initial configuration of the game,

addition of random tiles after very move, exploration of the agent and unavailability of

moves. This paper attempts to provide an approach to solve the issue of inherent

randomness in 2048. This approach is based on prioritized experience replay where the

model trains to learn best game-playing strategy from the experiences collected. With

this approach we achieved maximum tile value of 512.

Index Terms- Reinforcement learning, Q-learning, Experience Replay, 2048.

 INTRODUCTION

Reinforcement Learning is a type of learning mechanism where the agent learns by performing

tasks which are quantified by rewards. It is used in applications where there is no correct

approach to solve the problem. For example, in self-driving cars it would be unrealistic to

program it based on rules instead it should learn to perform best possible actions under

uncertain circumstances which it learns by getting rewards on performing desirable actions.

The goal of this project is to build an agent learn to play 2048. The game is played on a 4 × 4

board as shown in Fig 1. The tiles are either in power of 2 or blank. It starts with a random

configuration of two tiles consisting of 2s or 4s. Four actions are available: left, right, up and

down. But not all actions are possible in every game situation and a random tile of 2 or 4 is

https://www.aijr.in/about/policies/copyright/
https://creativecommons.org/licenses/by-nc/4.0/
https://www.aijr.in/
https://doi.org/10.21467/proceedings.1.57

Game Playing Agent for 2048 using Deep Reinforcement Learning

364 ISBN: 978-81-936820-0-5

Proceedings DOI: 10.21467/proceedings.1

Series: AIJR Proceedings

added after each move. Score is accumulated by merging tiles of same powers by performing

actions. The goal of the game is to achieve a tile of 2048.

Fig 1: Basic structure of 2048

The difficulties in this game are initial configurations of the game are random in nature,

addition of random tiles after very move, explorative nature of the agent during initial phase,

large state space and unavailability of moves in certain situations. Hence, building a successful

agent for this game is very difficult.

 LITERATURE SURVEY

The most prominent work in this field is done by Google Deepmind [1]. They used deep Q

learning methods to build an agent that was successful in playing 7 of the Atari 2600 games.

Their agent was able to surpass human expert-level in three games. The salient feature of their

project was that they were able to train an agent despite extremely high dimensional input

(pixels) and no information about the game. There was a successful attempt at learning the

game 2048 by [2]. They used expectimax optimization and they were able achieve tiles of 8192

on all most all runs of the game. Their model simply performs maximization over all possible

moves, followed by expectation over all possible tile spawns (weighted by the probability of

the tiles, i.e. 10% for a 4 and 90% for a 2). This is an alternative approach which is not based

on reinforcement learning but has produced very good results. Another attempt at learning to

play 2048 was done by [3]. They used Monte-Carlo Tree search strategy to encourage optimal

decision making during explorative phase , but this turned out be very expensive and did not

produce successful results.

 METHOD

In this section we describe the various algorithms and parameters used in building our agent.

3.1 State Representation

This project uses the coded version of the game [4]. Here the game states are represented in

the form of matrix with each element representing an exponent of 2 as shown in Fig 2. Each

element is equivalent to a tile in the 4×4 grid of the game. This design choice was made to be

computationally efficient. The matrix is flattened into a 1-D array which is fed as an input to

https://doi.org/10.21467/proceedings.1

Kaundinya et al., NCICCNDA 2018, AIJR Proceedings 1, pp.363-370, 2018

Proceedings of the 3rd National Conference on Image Processing, Computing, Communication, Networking and Data Analytics (NCICCNDA 2018)

365

the neural network.

Fig 2: State representation of 2048 in implementation

3.1 Algorithms Implemented

Q learning and SARSA are the fundamental algorithms in the field of reinforcement learning

which works by maximizing the expected value of the total payoff.

In Q learning, the agent tries to learn the optimal policy from its history of playing the same

game previously. In Q learning, the history is the experiences from the previous runs which is

stored in the format (S0, A0, R0, S1) where S0 indicates the state in which the agent was in and

A0 represents the action that was taken and R0 is the reward it had received for taking the

action, while S1 is the state reached due to A0. Q learning is an off policy algorithm, this is

because Q-learning is learnt via an optimal policy (max Q(s,a)), but its behavior policy is not

same as the optimal policy, since the behavior policy may take actions that are explorative that

is why Q learning is an off policy algorithm. SARSA is learnt via a non-optimal policy (Q(s,a))

and its behavior policy is also non optimal and takes actions that are explorative that is why

SARSA is called an on-policy algorithm. SARSA stores experiences in the format (S0, A0, R0,

S1, A1) which is the indicative of the origin of the algorithm’s name.

These algorithms direct the agent to learn an optimal policy by making it learn a Q function

which is used for optimal action selection. These algorithms don’t actually specify what the

agent must do. The agent can make two types of actions: exploitation and exploration. In

exploitation the agent utilizes the knowledge of current state to take an action that maximizes

the Q value. While in exploration the agent doesn’t necessarily takes an action that maximizes

the Q, rather it takes an action other than the one it thinks is the best. This is necessary to

build a better estimate of the optimal policy. The way exploration and exploitation is

implemented is by having an agent make a lot of explorative moves in the beginning that is

when the agent has no idea how to play the game and the unexplored state space is very large.

This leads to random actions. After much iteration the agent converges to which actions/states

are better and therefore it would exploit more and build a better estimate of the optimal policy.

The key strategies to implement this are using ε-greedy method and softmax action selection.

Game Playing Agent for 2048 using Deep Reinforcement Learning

366 ISBN: 978-81-936820-0-5

Proceedings DOI: 10.21467/proceedings.1

Series: AIJR Proceedings

In ε-greedy, ε times the agent explores and 1-ε the agent exploits. This gives programmer

control over the behavior of the agent. But there are two problems with a ε-greedy strategy:

one is that the actions other than best one are treated equally and a random pick is done on

them. But it would be preferable to choose one of the better moves from the remaining

actions (other than the best), instead of having a random pick. As better moves lead better

rewards and better game situations and the other is that it adds another random component

to an inherently random game of 2048. One way to do that is to select action with a probability

depending on the Q value. Hence we use soft-max action selection. In our implementation we

use multinomial distribution to sample the action.

3.2 Experience Replay

Experience replay is a data structure in which previous moves performed by reinforcement

learning agent are stored. The experience replay is built via simultaneously appending actions

performed onto an nd-array, list or even hash maps (based on efficiency). The presence of

experience replay is what makes reinforcement learning work, that is, it helps de-correlate

experiences experienced by the agent. From this the list of experiences are randomly sampled

out and subjected to batch learning, by doing this reinforcement learning agent learns from

de-correlated experiences and chances of over-fitting are reduced.

For example: In self-driving cars, suppose the agent in its training phase was trained to drive

on straight roads 85% of times and turns 15 % of times, if this was used as a dataset to make

the agent learn, then the agent will always be skewed towards learning to drive on straight

road, and will also over-fit on patterns of straight road, due to data being biased, but by

randomly sampling and de-correlation helps us avoid such issues.

Another advantage of experience replay is, agents get to train on rare experiences more often

than in normal case of online learning due to random sampling. Experience Replay is

analogous to a dataset in supervised learning but different in the sense that it is not fixed and

is constantly updated. We used 3 approaches to implement experience replay:

In the first approach we stored the actions in the experience replay without differentiating

on which action belonged to which game. We also randomly sampled experience from the

experience replay during learn phase.

In the second approach we stored actions belonging to a particular game run (start to

finish) in a separate data structure which was then appended to experience replay, during

learning phase we sampled games randomly and then sequentially appended their actions

to build batches which are input to the neural network.

In the third approach we stored actions belonging to a particular game run in a separate

data structure which was only appended to the experience replay based on a condition ,

That is say a threshold score , This would mean network gets trained on games that have

score better than the threshold, rest of the procedure is same as in 2 . This idea is called

prioritized experience replay.

https://doi.org/10.21467/proceedings.1

Kaundinya et al., NCICCNDA 2018, AIJR Proceedings 1, pp.363-370, 2018

Proceedings of the 3rd National Conference on Image Processing, Computing, Communication, Networking and Data Analytics (NCICCNDA 2018)

367

3.3 Reward Function

Heart of reinforcement learning systems is reward function. Reward function quantifies how

desirable an action taken by the agent. Design of reward function should be in such a way that

it must be easy for the agent to pick up good game playing strategies, an ideal reward function

takes an agent making desirable moves towards the goal rather than away from it. Reward

functions must be designed keeping in mind the tradeoff between intent that is what the agent

must do and incentive what the agent actually does.

Example: For example a goal of a robotic arm is to place blocks one over another, if say it

was rewarded a point for placing one block over another, here the intent is that we want the

agent to build a stack, while in essence agent can easily place the block and then remove it and

then again place the block in a loop, technically agent is getting rewarded for this but this is

not desirable at all.

In our implementation of the game, we found from personal experience from playing the

game that placing the maximum tile in corners always leads to higher scores, having more

number of moves and free tiles available at any point is more desirable, monotonous decreases

of powers in row and column of the max tile and in order is also desirable and moves that lead

more number of merges in turn leads to higher scores and free tiles are better.

Learning rate is 0.009, gamma is 0.9 and algorithm used is Q-learning for all our models

described in this section. The first reward function gave a consistent increase in reward based

on the value of the max tile being in the corner. Along with this if the agent was able to

maintain monotonicity in the particular row or column, it was further rewarded.

The second reward function used prioritized experience replay in which we stored actions of

games which has scored more than a threshold set. The rewarding scheme remained the same

as previous.

In third reward function, the elements of experience replay were the whole set of actions that

the agent took in a game instead of individual actions. We randomly sampled the games and

batched up the actions. This was used for training the neural network. The rewarding scheme

was the score.

 RESULTS AND ANALYSIS

4.1 First Reward Function

All the reward functions were trained on 35,000 games. The agent partly received the intention

of this function as mentioned above. It was able to follow the policy to make tiles of 256. This

was due to the present of large number of free tiles. In most cases, the game got terminated

very quickly from this state due to the unavailability of free tiles and random tile addition at

undesirable positions as seen in Fig 3. To increase the lifespan of the game and making the

agent understand the strategy better, prioritized experience replay was used in the next reward

function as mentioned in the previous section.

Game Playing Agent for 2048 using Deep Reinforcement Learning

368 ISBN: 978-81-936820-0-5

Proceedings DOI: 10.21467/proceedings.1

Series: AIJR Proceedings

Fig 3: Graph for reward function 1

4.2 Second Reward Function

By this method we achieved underwhelming results compared to the previous method as

shown in the Fig 4. On analysis, we found that the poor performance of this method was due

to the sampling of the actions randomly from the experience replay. Even though good game

moves were stored in the experience replay but due to the de-correlation of the strategy that

was used during the game the network was not able to learn any optimal policy.

This had an effect on previous method as well. We also concluded that the reward function

was complicated for the agent to learn the policy when it reached deeper into the game

(reaching 256).

Fig 4: Graph for reward function 2

https://doi.org/10.21467/proceedings.1

Kaundinya et al., NCICCNDA 2018, AIJR Proceedings 1, pp.363-370, 2018

Proceedings of the 3rd National Conference on Image Processing, Computing, Communication, Networking and Data Analytics (NCICCNDA 2018)

369

4.3 Third Reward Function

To overcome the problems in the previous method we used game score as the reward function

and bundled actions into games which were then appended to experience replay memory. This

would retain the in-game policy. We achieved our best results using this method. We increased

the lifespan of the game which is shown in the Fig 5.

Fig 5: Graph for reward function 3

4.4 Other Experiments

Above reward functions were applied on SARSA algorithm. The results were similar. We also

implemented more complex reward functions which consisted of snake-shaped patterns,

number of free tiles, number of merges, distance between the same valued tiles. These results

were not very successful as the agent would get one reward for many factors which the agent

couldn’t always comprehend.

 CONCLUSION

Although our initial goal was to master the game 2048, which we weren’t able to achieve, all

of our models achieved max-tile of 512.We reflect on what lead to such outcomes and why

2048 was not mastered. Our agent learned to make the tiles of 128 and 256 very easily, during

this phase the agent played the game optimally by having largest tile in the corner and it also

had monotonous decrease in the tile power in both row and column of the max-tile. We

believe the reason the agent mastered this strategy was due to availability of large number of

free tiles due to which random move done at this stage is recoverable in terms of strategy

learnt, but as the agent progressed to make tiles of higher value like 1024 and 512 it struggled.

This is because there were very few free tiles available and number of moves available was also

Game Playing Agent for 2048 using Deep Reinforcement Learning

370 ISBN: 978-81-936820-0-5

Proceedings DOI: 10.21467/proceedings.1

Series: AIJR Proceedings

very small, due to which even one explorative move at this stage or placement of a random

tile in an undesirable position ruined the game strategy which leads to early game termination.

This is an interesting project, due to its inherent randomness fitting it into reinforcement

learning methods is difficult, this requires more research into optimal reward function which

would make the agent learn the game strategy and also learn expectation over randomness.

 FUTURE SCOPE

Here are few things which we believe might help get better results, than what we have

achieved. Clipping the rewards between -1 to +1 [1], storing experiences in exponential

manner based on game scores, that is storing actions that lead to better scores based on total

score achieved, so idea is to set certain limits on score proportional to number of iteration

such that agent would only store all experiences better than the limit set. It is actually found

that as we go deeper into the game, the number of available moves decrease but also number

of optimal moves comes down (only 2 moves in most cases) and this is dependent on where

max-tile is placed. So designing a reward function such that it takes into account the reduced

optimal moves as we go deeper into the game (512 and above) can help.

One alternative is usage of dueling Q-architecture instead of classic Q-learning. Also, there

can be reduction in the overestimation of the classic Q-learning algorithm. Doubling Q-

learning algorithm can be used.

References

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller. “Playing Atari with

Deep Reinforcement Learning”. In Deep Learning, Neural Information Processing Systems Workshop, 2013

[2] Nneoneo. (Mar 22, 2017). AI for the 2048 game [Online] https://github.com/nneonneo/2048-ai. [Accessed : 8th

March 2018]

[3] Antoine Dedieu and Jonathan Amar. “Deep Reinforcement Learning for 2048”.

[4] George Wiese. (July 10, 2016). 2048 Reinforcement Learning. [Online] https://github.com/georgwiese/2048-rl

[Accessed : 8th March 2018]

[5] Richard Sutton and Andrew Barto. Reinforcement Learning: An Introduction. MIT Press, 1988.

[6] T. Schaul, J. Quan, Antonoglou, D. Silver, ”Prioritized Experience Replay”. ICLR 2016.

http://arxiv.org/abs/1511.05952

[7] Andrej Karpathy. (May 31, 2016) Reinforcement Learning: Pong from Pixels. [Online]

http://karpathy.github.io/2016/05/31/rl [Accessed : 15th March]

[8] Arthur Juliani. (August 25, 2016). Simple Reinforcement Learning with Tensorflow (10 Parts) [Online]

https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-0-q-learning-with-

tables-and-neural-networks-d195264329d0

[9] Kevin Chen, Deep Reinforcement Learning for Flappy Bird, CS 229 Machine-Learning Final Projects, Autumn 2015

[10] David Silver. (2015) “UCL Course on RL” [Online] http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

https://doi.org/10.21467/proceedings.1

	Abstract
	1 INTRODUCTION
	2 LITERATURE SURVEY
	3 METHOD
	3.1 State Representation
	3.1 Algorithms Implemented
	3.2 Experience Replay
	3.3 Reward Function

	4 RESULTS AND ANALYSIS
	4.1 First Reward Function
	4.2 Second Reward Function
	4.3 Third Reward Function
	4.4 Other Experiments

	5 CONCLUSION
	6 FUTURE SCOPE
	References

