
 

5 ISBN: 978-81-936820-9-8 

Thesis DOI: 10.21467/books.75 

 

 

AIJR Books 

 

 

 

 

Chapter 2: Continuum Mechanics Models and Development of 

VUMAT 

 

 Introduction 

The finite element analysis of many sheet forming problems faces often difficulties due to the 

strongly non-linear material behavior including friction which makes convergence difficult in 

implicit finite element schemes. Such problems can be better addressed within the framework 

of explicit schemes (such as ABAQUS/Explicit) especially when coupled with a remeshing 

strategy. The library of ABAQUS contains several constitutive models including isotropic 

hardening model kinematic hardening model and combined hardening model. Unfortunately, 

the version available in ABAQUS is not versatile enough as a number of parameters are 

considered to be constant. This problem is addressed in ABAQUS/Standard with the used of 

field variables and user subroutine “USDFLD” which is not available in EXPLICIT. 

For this reason, we developed a VUMAT user subroutine for the most general version of 

combined isotropic/ kinematic hardening model for ABAQUS/EXPLICIT. In this chapter, 

we firstly present a summary of the combined hardening model and its calibration, as well as 

an integration model for the model and then we propose the modification of combined 

hardening model to predict correctly the stress-strain curves with reverted load and its 

validation. 

 Constitutive Models 

In this study, the program is written in modular form so that different material models can be 

added in the future. At the present time there are seven continuum material models, although 

the isothermal elastic/plastic model is the only continuum model described here.  

The main assumption is that the strain rate is constant from time tn_l to tn. During each 

conjugate gradient iteration, the latest values of the kinematic quantities are used to update the 

stress. All material models are written in terms of the un-rotated Cauchy stress  and the 

deformation rate d in the un-rotated configuration. When calculating linear elastic material 

response, Hooke’s law is used. In a rate form, this is written as 

𝜎̇ = 𝜆𝑡𝑟𝑎𝑐𝑒(𝑑)𝛿 + 2𝜇𝑑       (2.1) 

where  and  are the elastic Lame material constants. 
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2.2.1 Basic Definitions and Assumptions 

Some definitions and assumptions are outlined here. In Figure 2.1, which geometrically depicts 

the yield surface in deviatoric stress space, the back stress (the center of the yield surface) is 

defined by the tensor  If  is the current value of the stress, the deviatoric part of the current 

stress is 

𝑆 = 𝜎 −
1

3
𝑡𝑟𝑎𝑐𝑒(𝜎)𝛿       (2.2) 

 

Figure 2.1: Yield surface in deviatoric stress space. 

The stress difference is then measured by subtracting the backstress from the deviatoric stress 

by 

𝜉 = 𝑆 − 𝛼         (2.3) 

The magnitude of the deviatoric stress difference R is defined by 

𝑅 = ‖𝜉‖ = √𝜉 : 𝜉        (2.4) 

where the inner product of second order tensors is S : S = SijSjj. Note that if the back stress is 

zero (isotropic hardening case) the stress difference is equal to the deviatoric part of the 

current stress S. 

The von Mises yield surface is defined as 

𝑓(𝜎) =
1

2
𝜉 : 𝜉 = 𝜅2        (2.5) 

and the von Mises effective stress is defined by 

𝜎̄ = √
3

2
𝜉 : 𝜉         (2.6) 
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Since R is the magnitude of the deviatoric stress tensor when  = 0, it follows that 

𝑅 = √2𝜅 = √
2

3
𝜎̄        (2.7) 

The normal to the yield surface can be determined from Equation 2.5: 

𝑸 =
𝝏𝒇/𝝏𝝈

‖𝝏𝒇/𝝏𝝈‖
=

𝝃

𝑹
        (2.8) 

It is assumed that the strain rate can be decomposed into elastic and plastic parts by an additive 

decomposition, 

𝑑 = 𝑑𝑒𝑙 + 𝑑𝑝𝑙         (2.9) 

and that the plastic part of the strain rate is given by a normality condition, 

𝑑𝑝𝑙 = 𝛾𝑄         (2.10) 

where the scalar multiplier   is to be determined. 

A scalar measure of equivalent plastic strain rate is defined by 

𝑑̄𝑝𝑙 = √
2

3
𝑑𝑝𝑙 : 𝑑𝑝𝑙        (2.11) 

which is chosen such that 

𝜎̄𝑑̄𝑝𝑙 = 𝜎 : 𝛥 𝜀𝑝𝑙         (2.12) 

The stress is expressed in rate is assumed to be purely due to the elastic part of the strain rate 

and terms of Hooke’s law by 

𝜎̇ = 𝜆𝑡𝑟𝑎𝑐𝑒(𝑑𝑒𝑙)𝛿 + 2𝜇𝑑𝑒𝑙      (2.13) 

where  and  are the Lame constants for the material. 

In what follows, the theory of isotropic hardening, kinematic hardening, and combined 

hardening is described. 
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2.2.2 Isotropic Hardening 

In the isotropic hardening case, the back-stress is zero and the stress difference is equal to the 

deviatoric stress S. The consistency condition is written by taking the rate of Equation 2.5: 

𝑓̇(𝜎) = 2𝜅𝜅̇         (2.14) 
The consistency condition requires that the state of stress must remain on the yield surface at 

all times. The chain rule and the definition of the normal to the yield surface given by Equation 

2.8 is used to obtain 

𝑓̇(𝜎) =
𝜕𝑓

𝜕𝜎
: 𝜎̇ = ‖

𝜕𝑓

𝜕𝜎
‖𝑄 : 𝜎̇       (2.15) 

and from Equations 2.4 and 2.5, 

‖
𝜕𝑓

𝜕𝜎
‖ = ‖𝑆‖ = 𝑅        (2.16) 

Combining Equations 2.14, 2.15, and 2.16, 

1

𝑅
𝑆 : 𝜎̇ = 𝑅̇         (2.17) 

Note that because S is deviatoric, 𝑆 : 𝜎̇ = 𝑆 : 𝑆̇, and 

𝑆 : 𝑆̇ =
𝑑

𝑑𝑡
(
1

2
𝑆 : 𝑆) =

𝑑

𝑑𝑡
(
𝜎̄2

3
) =

2

3
𝜎̄𝜎̇     (2.18) 

Then Equation 2.17 can be written as 

𝑅̇ = √
2

3
𝜎̇̄ = √

2

3
𝐻′𝑑̄𝑝𝑙       (2.19) 

where H’ is the slope of the effective stress versus equivalent plastic strain (𝜎̄ vs. 𝜀̄𝑝𝑙). 
This may be derived from uniaxial tension test data as shown in Figure 2.2. 

 

Figure 2.2: Conversion of data from a uniaxial tension test to equivalent plastic strain versus von 

Mises stress. 
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The consistency condition (Equation 2.17) and Equation 2.19 result in 

√
2

3
𝐻′𝑑̄𝑝𝑙 = 𝑄 : 𝜎̇       (2.20) 

The trial elastic stress rate 𝜎̇𝑡𝑟 is defined by 

𝜎̇𝑡𝑟 = 𝐶 : 𝑑        (2.21) 

where C is the fourth-order tensor of elastic coefficients defined by Equation 2.13. Combining 

the strain rate decomposition defined in Equation 2.9 with Equations 2.20 and 2.21 yields 

√
2

3
𝐻′𝑑̄𝑝𝑙 = 𝑄 : 𝜎̇𝑡𝑟 − 𝑄 : 𝐶 : 𝑑𝑝𝑙      (2.22)  

Since Q is deviatoric, C: Q = Q and Q: C: Q = 2. Then using the normality condition 

(Equation 2.10), the definition of equivalent plastic strain (Equation 2.11), and Equation 2.22, 

2

3
𝐻′𝛾 = 𝑄 : 𝜎̇𝑡𝑟 − 2𝜇𝛾       (2.23) 

and since Q is deviatoric (𝑄 : 𝜎̇𝑡𝑟 = 2𝜇𝑄 : 𝑑),  is determined from Equation 2.23 as 

𝛾 =
1

(1+
𝐻′

3𝜇
)
𝑄 : 𝑑        (2.24) 

The current normal to the yield surface Q and the total strain rate d are known quantities. 

Hence, from Equation 2.24,  can be determined and then used in Equation 2.10 to calculate 

the plastic part of the strain rate. With the additive strain rate decomposition and the elastic 

stress rate of Equations 2.9 and 2.13, this completes the definition of the rate Equations. 

The means of integrating the rate Equations, subject to the constraint that the stress must 

remain on the yield surface, still remains to be explained. How that is accomplished will be 

shown in Section 2.3.2. 

2.2.3 Kinematic Hardening 

For kinematic hardening, the von Mises yield condition is written in terms of the stress 

difference𝜉: 

𝑓(𝜉) =
1

2
𝜉 : 𝜉 = 𝜅2        (2.25) 

It is important to remember that both 𝜉 and the back stress  are deviatoric tensors. 

The consistency condition for kinematic hardening is written as 

𝑓̇(𝜉) = 0        (2.26) 
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because the size of the yield surface does not grow with kinematic hardening (𝜅̇ = 0). 

Using the chain rule on Equation 2.26, and 

𝜕𝑓

𝜕𝜉
: 𝜉̇ = 0        (2.27) 

𝜕𝑓

𝜕𝜉
= ‖

𝜕𝑓

𝜕𝜉
‖𝑄 = 𝑅𝑄       (2.28) 

Combining Equations 2.27 and 2.28 and assuming that R # 0, 

𝑄 : 𝜉̇ = 0         (2.29) 
or 

𝑄 :( 𝑆̇ − 𝛼̇) = 0        (2.30) 
A geometric interpretation of Equation 2.30 is shown in Figure 2.3 in which the back-stress 

moves in a direction parallel to the normal to the yield surface. 

Figure 2.3: Geometric interpretation of the consistency condition for kinematic hardening. 

The back-stress rate 𝛼̇ must now be defined. For the isotropic hardening case (Equation 2.20), 

𝑄 : 𝜎̇ = √
2

3
𝐻′𝑑̄𝑝𝑙 =

2

3
𝐻′𝛾      (2.31) 

The kinematic hardening condition assumes that 

𝛼̇ = 𝛷𝑑𝑝𝑙 = 𝛷𝛾𝑄       (2.32) 

where 𝛷 is a material parameter. If 𝛷 is chosen to be (2/3) H’, Equations 2.32 and 2.30 give 

a result identical to the isotropic hardening case (Equation 2.31). Hence, either Equation 2.31 

or 2.32 gives us a scalar condition on𝛼̇. Both of these are assumptions and must be shown to 

be reasonable. Experience with material models based on these assumptions has shown that, 

in fact, they are reasonable representations of material behavior. 
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Using Equation 2.32, Equation 2.9 (the strain rate decomposition), and Equation 2.13 (the 

elastic stress rate) in Equation 2.30 (the consistency condition for kinematic hardening) gives 

𝑄 :(𝜎̇𝑡𝑟 − 𝐶 : 𝑑𝑝𝑙 ) = 𝑄 :
2

3
𝐻′𝛾𝑄      (2.33) 

Using the normality condition (𝑑𝑝𝑙 = 𝛾𝑄) and the fact that Q is deviatoric, C: Q = Q. 

Solving Equation 2.33 for  then gives 

𝛾 =
1

(1+
𝐻′

3𝜇
)
𝑄 : 𝑑        (2.34) 

which is the same result as that of the isotropic hardening case. 

2.2.4 Combined Isotropic and Kinematic Hardening 

For the combined hardening case, a scalar parameter  is defined as ranging from 0 to 1, which 

determines the relative amount of each type of hardening. Figure 2.4 illustrates the uniaxial 

response to reversed loading that results from different choices of . When  = 0, only 

kinematic hardening occurs, and when  = 1, only isotropic hardening occurs. 

Figure 2.4: Effect of the hardening parameter  on uni-axial response. 

The results derived for the independent hardening cases are multiplied by the appropriate 

fraction for each type of hardening. Equations 2.19 and 2.32 are rewritten as 

𝑅 = √
2

3
𝐻′𝑑̄𝑝𝑙𝛽        (2.35) 

𝛼̇ =
2

3
𝐻′𝑑𝑝𝑙(1 − 𝛽) =

2

3
𝐻′𝛾𝑄(1 − 𝛽)     (2.36) 

As before, the consistency condition is 

𝑄 : 𝜉̇ = 𝑅̇         (2.37) 
or 

𝑄 :( 𝑆̇ − 𝛼̇) = √
2

3
𝐻′𝑑̄𝑝𝑙𝛽      (2.38) 



Chapter 2: Continuum Mechanics Models and Development of VUMAT 
 
 

 
 Combined Hardening Behavior for Sheet Metal and its Application 

 12   

Using the elastic stress rate, the additive strain rate decomposition, and the normality 

condition, 𝑄 : 𝑆̇ = 𝑄 :( 𝜎̇𝑡𝑟 − 𝛾𝐶 : 𝑄) Together with Equations 2.36 and 2.11, this 

transforms Equation 2.38 into 

𝑄 : 𝜎̇𝑡𝑟 − 𝛾𝑄 : 𝐶 : 𝑄 −
2

3
𝐻′𝛾𝑄(1 − 𝛽)𝑄 : 𝑄 = √

2

3
𝐻′𝛽√

2

3
(𝛾𝑄) :( 𝛾𝑄) (2.39) 

Solving for , 

𝛾 =
1

(1+
𝐻′

3𝜇
)
𝑄 : 𝑑        (2.40) 

which is the same result as was obtained for each of the independent cases. 

The following is a summary of the governing Equations for the combined theory: 

𝜎̇ = 𝐶 :( 𝑑 − 𝑑𝑝𝑙) = 𝜎̇𝑡𝑟 − 2𝜇𝛾𝑄     (2.41) 

𝑅̇ = 𝛽√
2

3
𝐻′𝑑̄𝑝𝑙 = 𝛽

2

3
𝐻′𝛾      (2.42) 

𝛼̇ = (1 − 𝛽)
2

3
𝐻′𝑑𝑝𝑙       (2.43) 








=

2

2

)(),(

)(),(0





fifplasticQ

fifelastic
d pl     (2.44) 

𝛾 =
1

(1+
𝐻′

3𝜇
)
𝑄 : 𝑑        (2.45) 

𝑄 =
𝜕𝑓/𝜕𝜎

‖𝜕𝑓/𝜕𝜎‖
=

𝜉

𝑅
       (2.46) 

 Implementation of Combined Hardening Law and Development of VUMAT 

The constitutive model presented in the previous section was implemented in the ABAQUS, 

a general-purpose finite element program [32]. This code provides a general interface for user 

programmed constitutive models through a “user subroutine” (VUMAT for 

ABAQUS/Explicit). As discussed above, we develop our own user subroutine because the 

versions of hardening behavior models in ABAQUS/Explicit are not flexible enough. Figure 

2.5 shows schematically the integration procedure in ABAQUS/Explicit with a VUMAT. For 

each time step, ABAQUS integrates the Equations of equilibriums based on the stress state at 

the beginning of the step at each integration point and provides the deformation gradient for 

VUMAT subroutine. VUMAT then finishes the integration of the constitutive model and 

updates the stress and state variable for each integration point. With the information that 

VUMAT provides, ABAQUS can then continue the calculation for the next time step. 
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Figure 2.5: ABAQUS and VUMAT subroutine. 

2.3.1 Derivation of the Constitutive Equations Elasticity 

A basic assumption of elastic-plastic models is that the deformation can be divided into an 

elastic part and an inelastic (plastic) part. There are mainly two methods of decomposition of 

kinematics: (a) multiplicative decomposition F = Fel Fpl, in which it requires that the plastic 

deformation gradient Fpl (9 elements) is stored as a state variable for all integration points. (b) 

additive decomposition: 𝛥𝜀 = 𝛥𝜀𝑒𝑙 + 𝛥𝜀𝑝𝑙where 𝛥𝜀is the total strain increment, 𝛥𝜀𝑒𝑙 is 

the increment of the elastic strain, and 𝛥𝜀𝑝𝑙  is the increment of inelastic strain. The additive 

decomposition is adequate when the elastic strains are small. For a linear and isotropic 

material: 

𝛥𝜎 = 𝐶𝛥𝜀𝑒𝑙 = 𝐶(𝛥𝜀 − 𝛥𝜀𝑝𝑙) with 𝐶 ≡ 2𝐺𝐼 + (𝐾 − 2𝐺/3)𝛿 : 𝛿 (2.47) 
where C is the forth order elasticity tensor, I and δ are respectively the forth and second order 

identity tensor, G and K are the shear modulus and bulk modulus respectively which are 
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functions of powder porosity. For isotropic materials, 𝐺 =
𝐸

2(1+𝜈)
 and𝐾 =

𝐸

3(1−2𝜈)
 where 

E and ν are Young’s modulus and Poisson’s ratio, respectively. 

Plasticity: The evolution Equation for the plastic part of the deformation gradient (“flow 

rule”) is given by 𝛥𝜀̄𝑝𝑙 = 𝛥𝛾𝑄 where, 𝛥𝛾 will be determined in Section 2.3.2. The details 

of time integration procedure are discussed below. 

2.3.2 Integration procedure 

For a typical time step, our VUMAT uses explicit Euler algorithm (Euler forward) to integrate 

stresses and internal state variable. The time increment is limited by the overall stability limit 

of the explicit integration of the Equations of motion. This is usually more restrictive than the 

stability limit of the stress integration in the VUMAT. Other integration algorithms are also 

can be used, such as implicit Euler algorithm (Euler backward) [33, 34] or semi-implicit Euler 

algorithm [35]. Since the stability constrain limits the overall time increment, explicit and semi-

explicit methods (i.e. not iterative methods) are more efficient than fully implicit which are 

more appropriate for large time steps and plastic strain increments. The VUMAT uses the 

stress and internal variables at the beginning of an increment and the strain increment provided 

by ABAQUS and needs to predict the stress at the end of the increment, as well as the new 

values of the internal state variables. 

The increment of strain across a time step Δt = tn+1 −tn is 

𝛥𝜀𝑛+1 = 𝛥𝜀𝑛+1
𝑒𝑙 + 𝛥𝜀𝑛+1

𝑝𝑙
      (2.48) 

The finite element algorithm requires an incremental form of Equations 2.41 through 2.46. 

Additionally, an algorithm must be used that integrates the incremental Equations subject to 

the constraint that the stress remains on the yield surface. 

The incremental analogs of Equations 2.41 through 2.43 are 

𝜎𝑛+1 = 𝜎𝑛+1
𝑡𝑟 − 2𝜇𝛥𝛾𝑄       (2.49) 

𝑅𝑛+1 = 𝑅 +𝑛
2

3
𝛽𝐻′𝛥𝛾       (2.50) 

𝛼𝑛+1 = 𝛼𝑛 + (1 − 𝛽)
2

3
𝛥𝛾𝐻′𝑄      (2.51) 

where 𝛥𝛾 represents the product of the time increment and the equivalent plastic strain rate 

(𝛥𝛾 = 𝛾𝛥𝑡) The subscripts n and n + 1 refer to the beginning and end of a time step, 

respectively; H, the slope of the uniaxial yield stress versus the plastic strain curve, is calculated 

by Equations (2.52), and  the scalar parameter, is defined as ranging from 0 to 1. When  = 
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0, only kinematic hardening occurs, and when  =1, only isotropic hardening occurs. For 

isotropic/kinematic hardening,  is determined by comparing cyclic tensile curves between 

experiment data and simulation data.   

𝐻 =
𝑑𝜎̄

𝑑𝜀̄
= 𝐾𝑛(𝜀0 + 𝜀𝑝̄𝑙)

𝑛−1
      (2.52) 

For nonlinear isotropic/kinematic hardening model, the size of yield surface was modified as 

a function of equivalent plastic strain 𝜀𝑃̄ and has the relationship with Swift’s work-hardening 

law Equation (2.53) following Equation (2.54) 

 𝜎̄(𝜀𝑝̄𝑙) = 𝐾(𝜀0 + 𝜀𝑝̄𝑙)
𝑛 ⥂       (2.53) 

𝜎̄𝑌(𝜀𝑝̄𝑙) = 𝜎̄(𝜀𝑝̄𝑙) − 𝐻𝜀𝑝̄𝑙       (2.54) 

An incremental analog is needed for the rate forms of the consistency condition given by 

Equations 2.14, 2.26, and 2.38. At the end of the time step, the stress state must be on the 

yield surface. Hence, the incremental consistency condition is 

𝛼𝑛+1 + 𝑅𝑛+1𝑄 = 𝑆𝑛+1        (2.55) 

Equation 2.50 is depicted in Figure 2.6. 

 

Figure 2.6: Geometric interpretation of the incremental form of the consistency Condition for 

combined hardening. 

Substituting the definitions given by Equations 2.49 through 2.50 into the consistency 

condition of Equation 2.55, 

[𝛼𝑛 + (1 − 𝛽)
2

3
𝐻′𝛥𝛾𝑄] + [𝑅𝑛 +

2

3
𝛽𝐻′𝛥𝛾] 𝑄 = 𝑆𝑛+1

𝑡𝑟 − 2𝜇𝛥𝛾𝑄  (2.56) 
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Taking the tensor product of both sides of Equation 2.56 with Q and solving for𝛥𝛾 , 

𝛥𝛾 =
1

2𝜇

1

(1+
𝐻′

3𝜇
)
(‖𝜉𝑛+1

𝑡𝑟 ‖ − 𝑅𝑛)      (2.57) 

It follows from Equation 2.57 that the plastic strain increment is proportional to the 

magnitude of the excursion of the elastic trial stress past the yield surface (see Figure 2.6). 

Using the result of Equation 2.57 in Equations 2.49 through 2.51 completes the algorithm. In 

addition, 

 𝛥𝑑𝑝𝑙 = 𝛥𝛾𝑄         (2.58) 

and 

𝛥𝑑̄𝑝𝑙 = √
2

3
𝛥𝛾        (2.59) 

Using Equation 2.57 in Equation 2.49 shows that the final stress is calculated by returning the 

elastic trial stress radially to the yield surface at the end of the time step (hence the name Radial 

Return Method). Estimates of the accuracy of this method and other methods for similarly 

integrating the rate Equations are available in Krieg and Krieg [28] and Schreyer et al. [29]. 

The radial return correction (the last term in Equation 2.49) is purely deviatoric. The summary 

of numerical integration algorithm of model is depicted in Figure 2.7. 

Figure 2.7: Geometric interpretation of the radial returned correction. 

2.3.3 Verification of VUMAT subroutine 

Above constitutive model is implemented into a commercial finite element program 

ABAQUS/Explicit via VUMAT user material for the uni-axial tension-compression and 

compression-tension tests with standard ASTM specimens for material of magnesium alloy 



Chapter 2: Continuum Mechanics Models and Development of VUMAT 
 
 

 
 Combined Hardening Behavior for Sheet Metal and its Application 

 17   

sheet which having rectangular cross-section of 13 mm width by 3.2 thickness and a gage 

length of 50 mm. in order to prevent buckling occurrence, a test method developed by Boger 

et al. [9], which relies on through-thickness sheet stabilization to avoid buckling, was used to 

extend the attainable strain range of Mg sheet in compression to approximately −0.08. A 

schematic of the novel tension/compression test [9] and the sample dimensions are shown in 

Figure 2.8 (a) two flat steel plates and a hydraulic cylinder system were used to provide side 

force to support the exaggerated dog-bone specimen. Side forces of 12 kN were used to 

stabilize the sheet sample. Figure 2.8 (b) shows the finite-element model of ABAQUS version 

6.5 for test process. Here, the blank modeled using solid elements C3D8R, and the flat steel 

plate modeled using rigid surface-elements R3D4.  

 

Figure 2.8: Schematic of the novel tension/compression test [9] 

The average element size of the solid elements was about 1mm in width, 2mm in length, and 

1mm in height. Meanwhile, the average element size of the rigid surface-elements was about 

2 mm in width, and 2 mm in length. The friction coefficient  at the blank/flat plate interface, 

2=0.1, was assumed for all the simulations. The other material parameters are listed in Table 

2.1. 

Table 2.1: Mechanical properties of tested material (Magnesium alloy sheet) 

Material AZ31B 

Density (r, kg/cm3) 1.77e-06 

Young’s modulus (E, kN/cm2) 45000 

Possion’s ratio 0.35 

Tension yield stress (MPa) (𝜎𝑌
𝑇) 220 

Compression yield stress (MPa) (𝜎𝑌
𝐶) 120 

    0.005 

K (MPa) 365.09 

n 0.124 
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Figure 2.9 shows the comparisons between the FE simulation and experiment results. The 

best fit for uni-axial tensile test and Bauschinger effect was chosen with the scalar parameter 

 of 0.5. However, there are discrepancies between theoretical models and the test data in 

others zone. Therefore, in this chapter we have modified the hardening law to predict correctly 

behavior of stress-strain curves at reversed load for Mg alloy and also all others kind of 

materials. 

Figure 2.9: The comparisons between the experiment result and FE simulation results of 

combined kinematic/isotropic hardening. 

2.3.4 A Modification of Combined Non-linear Hardening 

As shown in Figure 2.9, when  changes from 0.0 to 1.0 the directions of cyclic tensile curves 

will be changed. It means that, if we can present  as a function of equivalent strain then we 

can predict correctly the shapes of stress-strain curves at compression and reversed stress. In 

this study, we proposed  as exponential function of equivalent strain. In compression stress, 

the scalar parameter  is expressed as below: 

𝛽𝐶 = 𝛽0 − 𝐹(𝜀
𝑝𝑙(𝐶)

)𝑚       (2.60) 

where 0 is the initial direction of stress-strain curves when compression stress occurs. Here, 

0 = 1 is chosen to follow isotropic hardening direction. F and m are determined by fitting the 

generated curve from simulation with experiment data and chosen the best fit as F of 2.016e07 

and m of 5 for Mg alloy sheet.  
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In case of reversed stress occurrence for compression-tension tests, as depict in Figure 2.9, 

the curve should be divided by three sections. The first section is formulated as Equation 

(2.61)  

𝛽𝑅1
𝐶−𝑇 = 𝛽0 − 𝐹1(𝜀𝑅

𝑝𝑙(𝐶−𝑇)
)𝑚1      (2.61) 

here, 0 = 1, F1 and m1 was estimated as 1.952e08 and 5 for Mg alloy sheet, respectively. The 

second section is expressed as Equation (2.62) when𝜀𝑅
𝑝𝑙(𝐶−𝑇)

 is greater than 0.04 mm.  

𝛽𝑅2
𝐶−𝑇 = 𝐹2(𝜀𝑅

𝑝𝑙(𝐶−𝑇)
)𝑚2       (2.62) 

Similarly, F2 and m2 was estimated as 1.53e03 and 0.2 for Mg alloy sheet, respectively. The 

third section is generated when 𝛽𝑅2
𝐶−𝑇reaches   = 0.5 of fitting curve for uni-axial tensile test 

then 𝛽𝑅2
𝐶−𝑇 = 0.5.  

Figure 2.10 (a) shows the comparison of the measured continuous uni-axial tension-

compression (T-C) and compression-tension (C–T) tests to the results calculated from the 

finite element simulations with proposed models. The results of proposed model are good 

agreement with measurements. Figure 2.10 (b) present the results of tension-compression (T-

C) and compression-tension (C–T) FE simulation with various of pre-strain. To investigate 

this hardening model, finite element analysis of three-point bending-unbending test for the 

magnesium alloy sheet modeled using solid elements C3D8R is validated. The simulation 

results are depicted and plotted in Figure 2.11. In FE simulation result of three-point bending-

unbending for solid elements, we can check tension-compression and compression-tension 

curves for correlative elements at the same time. The proposed hardening law simulates 

forward bending-unbending quite well comparing with tension-compression and 

compression-tension test in Figure 2.10  

    

        (a)                                                                  (b) 
Figure 2.10: Uni-axial tension-compression (T-C) and compression-tension (C–T) simulation 

results of proposed model comparing with experiment data (a) and with various of pre-strain (b) 
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Figure 2.11: FE simulation results for three-point bending-unbending process 


