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Preface

Modeling the material behavior accurately in tension-compression and compression-tension
load is essential to sheet metal forming simulation, failure and springback prediction, especially
when the material points experience cyclic loadings. The combined linear hardening model
proposed previously is modified to model the transient behavior more realistically by
describing the scalar parameter 3 as a function of equivalent strain when compressive and
reversed stress occurred.

This book proposed modification hardening model to account for the expansion (isotropic)
and translation (kinematic) of the yield loci in terms of the hardening model. The capability of
the model is demonstrated by showing two characteristic effects of tension-compression and

compression curves: crossing and Bauschinger effects. Only modification of the scalar

parameter 3 is added to describe the evolution of cyclic cutves, which can be identified from
tensile-compression tests and curve fittings. The proposed model is applied to sheet metal
forming, fracture and springback predictions at room and elevated temperature. Tension-
compression tests are firstly simulated and compared with available experimental data in order
to fit and make the functions of scalar parameter 3. The corrected data are then applied for
complicated forming process e. g predict the fracture and improve the press formability of
door hinge, the incremental sheet metal forming for complicate shape, and rotational
incremental sheet forming for magnesium alloy sheets.

In order to predict the ductile fracture, a modification of combined kinematic and isotropic
hardening law is implemented and evaluated from the histories of ductile fracture value (I) by

means of finite element analysis. Here, the criterion for a ductile fracture, as developed by

OYANE, (Journal of Mechanical Work. Technology, 4 (1980), pp. 65-81), is catried out via a
user material, using finite element code. To improve press formability and secure a safe
product without any failure, the finite element method (FEM) simulations are coupled with
Taguchi's orthogonal array experiment.

To improve press formability of a door hinge, three design variables — the die corner radius,
declination of the bead punch, and peak angle of the bead punch — are selected to be improved.
The numeric simulations reveal that the die corner radius is the most important variable, and
its modification is most effective in improving the press formability for a door hinge. The
simulation results are confirmed with experimental ones.

To simulate incremental sheet forming process for the product of complex shape (e.g. human
face), a combination of both computer-aided manufacturing (CAM) and finite-element
modelling (FEM) simulation, is utilized. Here, the results, using ABAQUS/Explicit finite-
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element code, are compared with forming limit curve at fracture in order to predict and
improve the forming conditions by changing process variables of tool radius, tool down-step,
and friction coefficient. First, the CAM simulation is used to create cutter location data. This
data are then calculated, modified, and exported to the input file format required by ABAQUS
through using MATLAB programming. The FEM results are implemented for negative
incremental sheet forming and then investigated by experiment

To simulate the effect of the large amount of heat generation at elements in the contact area
due to friction energy of the rotational tool-specimen interface on equivalent stress-strain
evolution in incremental forming, Johnson-Cook model was applied and also compared with
equivalent stress-strain curves obtained by tensile test at elevated temperatures. The (FE)
simulation results of ductile fracture was then compared with the experimental results of 80
mm X 80 mm X 25 mm square shape with 45 °, 60 °, and 80 mm X 80 mm X 20 mm square
shape with 70 © wall angles. The trend of (FE) simulation results were quite good agreement
with experiment results. Finally, the effect of process parameters e. g tool down-step and tool
radius on the ductile fracture value and forming limit curve at fracture (FLCF) were

investigated using (FE) simulation results.

Dr. Nguyen Duc Toan
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