

Combined Hardening Behavior for Sheet Metal and its Application

Nguyen Duc Toan

AIJR Publisher

More information about AIJR Books at – https://books.aijr.org

Combined Hardening Behavior for Sheet Metal and its Application

by

Nguyen Duc Toan Associate Professor, School of Mechanical Engineering, Hanoi University of Science and Technology, Vietnam

Published by AIJR Publisher, 73, Dhaurahra, Balrampur, India 271604

Combined Hardening Behavior for Sheet Metal and its Application

Author Nguyen Duc Toan Associate Professor, School of Mechanical Engineering, Hanoi University of Science and Technology, 1A-Dai Co Viet Street, Hai Ba Trung District, Hanoi City, Vietnam, 100000

About this Monograph

This book proposed modification hardening model to account for the expansion (isotropic) and translation (kinematic) of the yield loci in terms of the hardening model. The capability of the model is demonstrated by showing two characteristic effects of tension-compression and compression curves: crossing and Bauschinger effects.

ISBN: 978-81-936820-9-8 (eBook) DOI: 10.21467/books.75

Type Peer-reviewed

Published 14 August 2019

Number of Pages 84

Imprint AIJR Books

© 2019 Copyright held by the author(s) of the book. Abstracting is permitted with credit to the source. This is an open access book under <u>Creative Commons Attribution-NonCommercial 4.0 International</u> (CC BY-NC 4.0) license, which permits any non-commercial use, distribution, adaptation, and reproduction in any medium, as long as the original work is properly cited.

AIJR Publisher, 73, Dhaurahra, Balrampur, India 271604

Table of Contents

Table of C	ontentsi
List of Fig	uresiii
List of Tal	blesv
Preface	
Chapter 1:	Introduction
1.1	Motivation1
1.2	Literature review
1.3	Goals of this book
Chapter 2:	Continuum Mechanics Models and Development of VUMAT5
2.1	Introduction
2.2	Constitutive Models
2.2.1	Basic Definitions and Assumptions
2.2.2	Isotropic Hardening
2.2.3	Kinematic Hardening9
2.2.4	Combined Isotropic and Kinematic Hardening
2.3	Implementation of Combined Hardening Law and Development of VUMAT 12
2.3.1	Derivation of the Constitutive Equations Elasticity
2.3.2	Integration procedure
2.3.3	Verification of VUMAT subroutine
2.3.4	A Modification of Combined Non-linear Hardening
Chapter 3:	Application of Proposed Hardening Model to Predict Fracture and Improve Press
Formabilit	y of Door Hinge
3.1	Introduction
3.2	Finite element procedures
3.2.1	Materials
3.2.2	Ductile fracture criterion
3.2.3	Combination of finite element simulation and criteria for ductile fracture24
3.3	Taguchi's Orthogonal Array26 i

3.4	Results and Discussion	27
3.5	Conclusion	
Chapter 4 4.1	4: Study of Incremental Sheet Forming for Complex Shape and its Improvem Introduction	nent.34 34
4.2	Finite Element Simulation	
4.2.1	1 Geometry and FE models	
4.2.2	2 Materials	
4.2.3	3 Boundary conditions, loading, and interactions	
4.2.4	4 Ductile fracture criterion	
4.3	Obtained CAE input file procedures	
4.3.	1 Tool path generation	
4.3.2	2 CAE input file modifications	
4.4	Taguchi's Orthogonal Array	43
4.5	Estimation of FLC in incremental SHEET forming	45
4.6	Results and Discussion	47
4.7	Conclusion	53
Chapter ! Incremer 5.1	5: Case Study for Magnesium Alloy Sheets to Predict Ductile Fracture of Ro ntal Forming Introduction	tational 54 54
5.2	Finite element procedures	55
5.2.	1 Johnson–Cook model at elevated temperatures	57
5.2.2 form	2 Problem description, geometry and FE models for rotational incre ning of magnesium alloy sheet	emental 59
5.2.3	3 Ductile fracture criterion	61
5.3	Results and discussion	61
5.3.	1 Effect of tool down-step	65
5.3.2	2 Effect of tool radius	66
5.4	Conclusion	67
Bibliogra	phy	68

List of Figures

Figure 2.1: Yield surface in deviatoric stress space.	6
Figure 2.2: Conversion of data from a uniaxial tension test to equivalent plastic strain versus von	Mises
stress.	8
Figure 2.3: Geometric interpretation of the consistency condition for kinematic hardening	10
Figure 2.4: Effect of the hardening parameter β on uni-axial response	11
Figure 2.5: ABAQUS and VUMAT subroutine	13
Figure 2.6: Geometric interpretation of the incremental form of the consistency Condition for com hardening	<i>ibined</i>
Figure 2.7: Geometric interpretation of the radial returned correction	16
Figure 2.8: Schematic of the novel tension/compression test [9]	17
Figure 2.9: The comparisons between the experiment result and FE simulation results of com-	ibined
Figure 2 10: Uni-axial tension-compression (T,C) and compression-tension $(C-T)$ simulation resu	ults of
proposed model comparing with experiment data (a) and with various of pre-strain (b)	19
Figure 2.11: FE simulation results for three-point bending-unbending process	20
Figure 3.1: Typical failure of a door hinge in critical area	21
Figure 3.2: Deformed snape in finite element simulation, where maximum of integral value I was 1.	045 in
concerned area	22
Figure 3.5: Finite element model for test simulation	24
Figure 3.4. The general updating flow-chart of subroutine	25
Figure 3.5: Definition of factors in concerned area	20 pning
(b) kinematic hardening and (c) combined isotronic/kinematic hardening law	28
Figure 3.7: Evolutional stress state in concerned area	
Figure 3.8: Estimation of scalar parameter (B)	
Figure 3.9: Deformed shape in finite element simulation of optimum case, where integral value I was	0.725
in concerned area	32
Figure 3.10: Case No. 8: R=20mm, a=20°, b=90°, r=5mm, I=0.748. No crack occurred in concerned	d area
	32
Figure 4.1: Deformed shapes in experiment of failure test sample	36
Figure 4.2: The FE simulations for a failure test sample.	37
Figure 4.3 Finite element model for simulation	38
Figure 4.4: The method to obtain CL data and simulation process.	40
Figure 4.5: Verification of the intersection points	40
Figure 4.6: Calculation of cutter location (CL) points.	41
Figure 4.7: Tool path strategy.	42
Figure 4.8: Definition of the difference of major strain ($\Delta \varepsilon$).	43
Figure 4.9: Definition of considering parameters.	44
Figure 4.10: Obtainment of FLC in incremental forming.	46
Figure 4.11: <i>Estimation of scalar parameter</i> (β)	47
Figure 4.12: The evolution of deformed shape in FEM for optimum case of A ₃ B ₃ C ₃ (i) and simulation of I value (ii)	<i>result</i> 50
Figure 4.13: Experimental result for optimum case of $A_3B_3C_3D_1$ ($R=4mm$, $H=0.7mm$, and $\mu=\mu_1=\mu_2$	≥ <i>=0.1).</i>
Figure 4.14: Comparisons between section view of evolutional stages of FEM simulation and design s	ection
at tool stroke of $h = 8.5mm$, $h = 17mm$, and $h = 22mm$.	52
Figure 4.15: Comparison of shape distribution between FE simulation and experiment results	52
Figure 5.1: Stress-strain curves obtained from in-plane uniaxial compression tests at room temperature [97])	e (Ref.
L 3/	

Figure 5.2: Yield loci obtained from biaxial tensile tests and in-plane uniaxial compression tests (Ref. [97]) 56
igure 5.3 The stress-strain curves with measured values [97]
"igure 5.4: The stress-strain curves calculated using FE simulation and compared with the measured values
Figure 5.5: The square cups formed by rotational incremental sheet forming of (a) 45° wall angle, (b) 60° wall
angle, and (c) 70° wall angle at which the crack was occurred (Ref. [19])
igure 5.6: Forming limit for rotational incremental forming60
igure 5.7: Finite element model for incremental forming simulation60
Sigure 5.8: Heat generation in the contact areas between the specimen and the tool61
'igure 5.9: Evolution of equivalent stress-strain curve in incremental forming in case of (a) without considering Johnson-Cook model and (b) considering Johnson-Cook model
Figure 5.10: Deformed shape in finite element simulation in case of (a) 45° wall angle, (b) 60° wall angle, and (c) 70° wall angle
Figure 5.11: FLCF obtainment from FE simulation at the corner and wall area for the case of 70 ⁰ wall angle. 64
Figure 5.12: Deformed shape in FE simulation in case of 70° wall angle, tool radius of 6 mm, and (a) tool down-step of 0.8 mm; (b) tool down-step of 1.2 mm
igure 5.13: FLCF with different tool down-step and 6 mm tool radius
Sigure 5.14: Deformed shape in FE simulation in case of 70 ° wall angle, tool down-step of 0.8 mm, and (a) tool radius of 4 mm; (b) tool radius of 8 mm
igure 5.15: FLCF with different tool radius and 0.4 mm tool down-step

List of Tables

Table 2.1: Mechanical properties of tested material (Magnesium alloy sheet)	17
Table 3.1: Mechanical properties of tested material (SAPH-440)	
Table 3.2: Factors and their levels in FEM simulation	
Table 3.3: Taguchi's L9 orthogonal array for simulations	
Table 3.4: L9 orthogonal array and calculated observed values	
Table 3.5: ANOM and ANOVA Table of effect on ductile fracture value (I)	
Table 4.1: Mechanical properties of tested material (Cold Rolled Steel)	39
Table 4.2: Factors and their levels in FEM simulation	45
Table 4.3: Taguchi's L9 orthogonal array for simulations	45
Table 4.4: L9 orthogonal array and calculated observed values	
Table 4.5: ANOM and ANOVA Table for effect of difference in major strain $(\Delta \varepsilon)$	
Table 4.6: ANOM and ANOVA Table of effect on ductile fracture value (I).	49
Table 5.1: Maximum temperature of the tool and specimen for each square cup (Ref. [97	']) 55
Table 5.2: Thermo-physical properties of magnesium alloy AZ31 as function of temperation	ure T (in °
C) (Ref. [99])	

Preface

Modeling the material behavior accurately in tension-compression and compression-tension load is essential to sheet metal forming simulation, failure and springback prediction, especially when the material points experience cyclic loadings. The combined linear hardening model proposed previously is modified to model the transient behavior more realistically by describing the scalar parameter β as a function of equivalent strain when compressive and reversed stress occurred.

This book proposed modification hardening model to account for the expansion (isotropic) and translation (kinematic) of the yield loci in terms of the hardening model. The capability of the model is demonstrated by showing two characteristic effects of tension-compression and compression curves: crossing and Bauschinger effects. Only modification of the scalar parameter β is added to describe the evolution of cyclic curves, which can be identified from tensile-compression tests and curve fittings. The proposed model is applied to sheet metal forming, fracture and springback predictions at room and elevated temperature. Tension-compression tests are firstly simulated and compared with available experimental data in order to fit and make the functions of scalar parameter β . The corrected data are then applied for complicated forming process e. g predict the fracture and improve the press formability of door hinge, the incremental sheet metal forming for complicate shape, and rotational incremental sheet forming for magnesium alloy sheets.

In order to predict the ductile fracture, a modification of combined kinematic and isotropic hardening law is implemented and evaluated from the histories of ductile fracture value (I) by means of finite element analysis. Here, the criterion for a ductile fracture, as developed by OYANE, (*Journal of Mechanical Work. Technology*, 4 (1980), pp. 65–81), is carried out via a user material, using finite element code. To improve press formability and secure a safe product without any failure, the finite element method (FEM) simulations are coupled with Taguchi's orthogonal array experiment.

To improve press formability of a door hinge, three design variables – the die corner radius, declination of the bead punch, and peak angle of the bead punch – are selected to be improved. The numeric simulations reveal that the die corner radius is the most important variable, and its modification is most effective in improving the press formability for a door hinge. The simulation results are confirmed with experimental ones.

To simulate incremental sheet forming process for the product of complex shape (e.g. human face), a combination of both computer-aided manufacturing (CAM) and finite-element modelling (FEM) simulation, is utilized. Here, the results, using ABAQUS/Explicit finite-

element code, are compared with forming limit curve at fracture in order to predict and improve the forming conditions by changing process variables of tool radius, tool down-step, and friction coefficient. First, the CAM simulation is used to create cutter location data. This data are then calculated, modified, and exported to the input file format required by ABAQUS through using MATLAB programming. The FEM results are implemented for negative incremental sheet forming and then investigated by experiment

To simulate the effect of the large amount of heat generation at elements in the contact area due to friction energy of the rotational tool-specimen interface on equivalent stress-strain evolution in incremental forming, Johnson-Cook model was applied and also compared with equivalent stress-strain curves obtained by tensile test at elevated temperatures. The (FE) simulation results of ductile fracture was then compared with the experimental results of 80 mm \times 80 mm \times 25 mm square shape with 45 °, 60 °, and 80 mm \times 80 mm \times 20 mm square shape with 70 ° wall angles. The trend of (FE) simulation results were quite good agreement with experiment results. Finally, the effect of process parameters e. g tool down-step and tool radius on the ductile fracture value and forming limit curve at fracture (FLCF) were investigated using (FE) simulation results.

Dr. Nguyen Duc Toan