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Preface 

Modeling the material behavior accurately in tension-compression and compression-tension 

load is essential to sheet metal forming simulation, failure and springback prediction, especially 

when the material points experience cyclic loadings. The combined linear hardening model 

proposed previously is modified to model the transient behavior more realistically by 

describing the scalar parameter  as a function of equivalent strain when compressive and 

reversed stress occurred. 

This book proposed modification hardening model to account for the expansion (isotropic) 

and translation (kinematic) of the yield loci in terms of the hardening model. The capability of 

the model is demonstrated by showing two characteristic effects of tension-compression and 

compression curves: crossing and Bauschinger effects. Only modification of the scalar 

parameter  is added to describe the evolution of cyclic curves, which can be identified from 

tensile-compression tests and curve fittings. The proposed model is applied to sheet metal 

forming, fracture and springback predictions at room and elevated temperature. Tension-

compression tests are firstly simulated and compared with available experimental data in order 

to fit and make the functions of scalar parameter  The corrected data are then applied for 

complicated forming process e. g predict the fracture and improve the press formability of 

door hinge, the incremental sheet metal forming for complicate shape, and rotational 

incremental sheet forming for magnesium alloy sheets.   

In order to predict the ductile fracture, a modification of combined kinematic and isotropic 

hardening law is implemented and evaluated from the histories of ductile fracture value (I) by 

means of finite element analysis. Here, the criterion for a ductile fracture, as developed by 

OYANE, (Journal of Mechanical Work. Technology, 4 (1980), pp. 65–81), is carried out via a 

user material, using finite element code. To improve press formability and secure a safe 

product without any failure, the finite element method (FEM) simulations are coupled with 

Taguchi's orthogonal array experiment. 

To improve press formability of a door hinge, three design variables – the die corner radius, 

declination of the bead punch, and peak angle of the bead punch – are selected to be improved. 

The numeric simulations reveal that the die corner radius is the most important variable, and 

its modification is most effective in improving the press formability for a door hinge. The 

simulation results are confirmed with experimental ones. 

To simulate incremental sheet forming process for the product of complex shape (e.g. human 

face), a combination of both computer-aided manufacturing (CAM) and finite-element 

modelling (FEM) simulation, is utilized. Here, the results, using ABAQUS/Explicit finite-



 

viii 
 

element code, are compared with forming limit curve at fracture in order to predict and 

improve the forming conditions by changing process variables of tool radius, tool down-step, 

and friction coefficient. First, the CAM simulation is used to create cutter location data. This 

data are then calculated, modified, and exported to the input file format required by ABAQUS 

through using MATLAB programming. The FEM results are implemented for negative 

incremental sheet forming and then investigated by experiment 

To simulate the effect of the large amount of heat generation at elements in the contact area 

due to friction energy of the rotational tool-specimen interface on equivalent stress-strain 

evolution in incremental forming, Johnson-Cook model was applied and also compared with 

equivalent stress-strain curves obtained by tensile test at elevated temperatures. The (FE) 

simulation results of ductile fracture was then compared with the experimental results of 80 

mm × 80 mm × 25 mm square shape with 45 °, 60 °, and 80 mm × 80 mm × 20 mm square 

shape with 70 ° wall angles. The trend of (FE) simulation results were quite good agreement 

with experiment results. Finally, the effect of process parameters e. g tool down-step and tool 

radius on the ductile fracture value and forming limit curve at fracture (FLCF) were 

investigated using (FE) simulation results. 
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Chapter 1: Introduction 

 Motivation 

Sheet forming parts has become a successful and well-established process for metals, alloys, 

polymers, ceramics and composites. Sheet forming may be used as final products or are 

subjected to further processing such as trimming, laze cutting, punching, etc. In either case, 

high strength and good formability are important properties and determine the success of 

sheet forming process and possibly that of subsequent operations. Process and properties 

optimization have always been a major concern in industrial practice. It is usually attempted 

by detailed considerations of die and punch design, lubrication, and proper selection of 

processing. The goal is to control the deformation during forming process and ensure 

minimum variation of local zone, avoidance of cracking (failure), dimensional control, and 

elimination of defects. 

The process of sheet forming is a complex non-linear problem. When a force is applied on a 

forming tool, a number of mechanisms become involved in the transformation of the material 

into a die and became a well-defined shape. Normally, the following processes are involved in 

a typical sheet forming process: 

• elastic deformation  

• plastic deformation  

• elastic recovery  

Under the action of these mechanisms, the sheet forming process attains a level of 

deformation, which usually decreases with higher strength of material. The properties of 

material, such as relative density and strength, are not only related to the nature of the product, 

but also depend on the mode and history of externally applied forces. More specifically, stress 

loading path affects particle deformation and development of contact areas, which in turn 

affects the formability and springback of final products. 

Since the mid-seventies, modeling of hardening behavior has provided an effective way to 

understand the basic mechanisms and optimize sheet forming process. These models are 

typically continuum mechanics-based phenomenological models. Currently, the use of these 

models in the finite element analysis has been successful in predicting failure and springback 

in complex shaped sheet forming. 

In sheet metal forming applications, the non-monotonous deformation is especially important 

because reverse loading is commonly observed when sheet element moves through the tool 

https://doi.org/10.21467/books.75
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radii and draw beads. Also, when sheet parts are removed from tools after forming, material 

elements experience elastic unloading and spring-back. To describe the reverse loading 

behavior in the continuum phenomenological plasticity, there are two main approach, the first 

one based on kinematic hardening involving shifting of a single-yield surface and the second 

one involving multiple yield surfaces [1]. The simplest one in the former group is based on 

linear kinematic hardening proposed by Prager [2], Ziegler [3]. To add the transient behavior, 

the linear model was modified to nonlinear forms by Amstrong and Frederick [4] and 

Chaboche [5] by introducing an additional term to Prager’s linear kinematic hardening model. 

Nonlinear and smooth deformation during loading and reverse loading were reproduced by 

introducing additional back stress term which makes total back stress decrease gradually with 

deformation. Several nonlinear kinematic hardening models based on Amstrong–Fredrick 

model have been emerged by introducing multiple back-stress terms [6] and [7] and translating 

limiting surface [8] and [9]. Two-surface models independently proposed by Krieg [10] and 

Dafalias and Popov [11] define the continuous variation of hardening between two yield 

surfaces. In the original multi-surface model proposed by Mroz [12], the predicted stress–

strain curve is piecewise linear because of the constant plastic module [13]. Several multi/two-

surface models have been proposed later[14], [15], [16], [17], [18], and [19] to analyze the one-

dimensional cyclic behavior of solid structures at small strains. As a result, the prediction of 

fracture and spring-back with current models is not easy. The formation of parameters during 

loading and unloading, as well as the material elastic recovery may be confusing and also have 

a large effect on the final curve of prediction. With these in mind, the goal of this book is to 

make inroads on the understanding of the hardening behavior and propose a modification of 

hardening behavior to predict correctly the tension-compression curve in simple way. In the 

next section, we review the pertinent literature. 

 Literature review 

In the past two decades, modeling and simulation play an increasingly important role in the 

design and optimization of sheet forming operations. The most common models are 

phenomenological and isotropic. 

Various phenomenological hardening models, isotropic, kinematic and multi-surface, have 

been developed to reproduce hardening behavior of metals under various loading paths [2, 3, 

12, 13, 20-24]. The simplest one, isotropic hardening model, uniformly extends a yield surface 

with fixed origin in stress space. The uniform extension implies that plastic deformation does 

not introduce further anisotropy and reduces any initial anisotropy. The isotropic hardening 

model can be adequate for FCC metals under monotonic loading, but it is not appropriate for 

materials under complex loading paths, where Bauschinger Effect or strength differential upon 

reverse loading is non-negligible. The isotropic hardening will introduce significant errors in 

the stress distribution of magnesium alloys undergone through sheet forming.  
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In contrast to the isotropic hardening model, a yield surface can translate in stress space with 

constant shape and size by a kinematic hardening model [13]. Various kinematic hardening 

models have been proposed to address Bauschinger Effect and cyclic plasticity [2, 4, 5]. One 

thermodynamical criterion for cyclic plasticity was summarized by Chaboche [5]: ‘the current 

state of materials depends only on the current values of observable variables (total strain, 

temperature, etc.) and a set of internal-state variables’.  

The classical kinematic hardening model of Prager can describe some Bauschinger Effect, but 

without transient yield upon reverse loading [2, 24, 25]. Back stress rate was assumed to be 

proportional to the plastic strain rate in Prager’s model. This implies that continuous 

deformation encounters higher resistance than reverse loading. The main shortcoming of this 

model is that the stress strain relation is ‘univocal’ as a result of the assumed proportionality 

[5]. Another shortcoming is the inconsistency between different sub stress spaces. Ziegler 

model solved the problem of inconsistency, by translating the yield surface in radial directions 

[3].  

Linearity in stress strain behavior and sharp reverse yield induced by Prager’s model were 

avoided by two- or multi-surface models [10, 11, 12, 20]. Only one yield surface was active at 

a given instant in time in the two- or multi-surface models. A large number of yield surfaces 

are needed to describe material behaviors in the multi-surface models, because of their 

piecewise linearity in stress strain behaviors. The two-surface model can predict cyclic plasticity 

well by introducing continuous variation of hardening modulus to translate the active yield 

surface, although it has its disadvantages discussed by Chaboche [5].  

Based on Prager’s model, Armstrong and Frederick [4] proposed a nonlinear kinematic 

hardening model by introducing a recall term for back stress evolution. Chaboche [5] further 

developed it, by including multiple back stresses to more accurately model cyclic plasticity. 

Nonlinearity and smooth transient behavior upon reverse loading were reproduced by the 

recall term. The recall term implies that the effect of earlier plastic deformation on back stress 

decreases gradually with progressive deformation. This reflects the fact that microstructure 

from the recent deformation history contributes greater to the back-stress evolution than does 

the deformation occurring earlier.  

More complex anisotropic hardening models have been proposed during last decade to 

consider microstructure evolution in steels subjected to arbitrary loading path change at 

moderate to large deformation [26-31]. Three internal state variables, (S, P, X), were 

introduced to describe ‘directional strength of planar persistent dislocation structures’ S, its 

polarity P, and back stress X induced by dislocation pile-ups. The evolution of these state 

variables was specified on the basis of experimental observations of the evolution of 

dislocation structure, such as depolarization and disintegration of preformed dislocation 

structure under reverse loading. The effect of prestrain on hardening in subsequent 

deformation can be predicted by this model. However, texture evolution is not considered 
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explicitly, although initial plastic anisotropy induced by texture was incorporated in the model 

by a fourth-order tensor. The accuracy of model prediction at large strains would be improved 

by considering texture evolution.  

 Goals of this book 

We believe that better understanding the role of hardening behavior is the key to better predict 

the tension-compression and compression-tension curves. The major goal of this dissertation 

is to give the simple way to determine correctly stress-strain curves with revered load, and then 

predict fracture obeyed ductile fracture criterion, therefore to provide a design tool to control 

and optimize the sheet forming operations. The specific goals of this study are outline below: 

• In chapter 2 we identify the capabilities and limitations of phenomenological models 

on predicting such as the stress and strain curve evolution as well as the fracture 

tendency. To do this, we implemented one of the most popular phenomenological 

models – combined kinematic/isotropic model into finite element program 

(ABAQUS/EXPLICIT) and developed a robust user subroutine, which provides a 

useful tool to study formability of sheet forming process. After that we propose a 

modification of hardening law to predict correctly stress-strain curves with reverted 

load. 

• In chapter 3, using the developed VUMAT, we analyzed, predicted fracture and 

optimized press formability of a door hinge. 

• Incremental sheet forming for complex shape are modeled and studied with respect 

to the effect of parameters on incremental forming method and its improvements in 

chapter 4. A combination of both CAM and FEM simulation is implemented and 

evaluated from the histories of stress and strain value by means of finite element 

analysis. Then, the results, using ABAQUS/Explicit finite element code, are 

compared with forming limit curve at fracture (FLCF) and also ductile fracture 

criterion via VUMAT subroutine in order to predict and improve the forming 

conditions by changing process variables of tool radius, tool down-step and friction 

coefficient according to the orthogonal array of Taguchi’s method. 

• Chapter 5 contains a study of rotational incremental forming for magnesium alloy 

sheet. As the ductile failure criterion, the Oyane’s fracture criterion via VUMAT user 

material based on a combined kinematic/isotropic hardening law and Johnson-Cook 

model is used to predict fracture at elevated temperatures which was generated by 

rotational tool and friction energy at the tool-specimen interface. The simulation 

results were used to predict forming limit curve for rotational incremental forming 

and study the effect of process parameters on ductile fracture value.
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Chapter 2: Continuum Mechanics Models and Development of 

VUMAT 

 

 Introduction 

The finite element analysis of many sheet forming problems faces often difficulties due to the 

strongly non-linear material behavior including friction which makes convergence difficult in 

implicit finite element schemes. Such problems can be better addressed within the framework 

of explicit schemes (such as ABAQUS/Explicit) especially when coupled with a remeshing 

strategy. The library of ABAQUS contains several constitutive models including isotropic 

hardening model kinematic hardening model and combined hardening model. Unfortunately, 

the version available in ABAQUS is not versatile enough as a number of parameters are 

considered to be constant. This problem is addressed in ABAQUS/Standard with the used of 

field variables and user subroutine “USDFLD” which is not available in EXPLICIT. 

For this reason, we developed a VUMAT user subroutine for the most general version of 

combined isotropic/ kinematic hardening model for ABAQUS/EXPLICIT. In this chapter, 

we firstly present a summary of the combined hardening model and its calibration, as well as 

an integration model for the model and then we propose the modification of combined 

hardening model to predict correctly the stress-strain curves with reverted load and its 

validation. 

 Constitutive Models 

In this study, the program is written in modular form so that different material models can be 

added in the future. At the present time there are seven continuum material models, although 

the isothermal elastic/plastic model is the only continuum model described here.  

The main assumption is that the strain rate is constant from time tn_l to tn. During each 

conjugate gradient iteration, the latest values of the kinematic quantities are used to update the 

stress. All material models are written in terms of the un-rotated Cauchy stress  and the 

deformation rate d in the un-rotated configuration. When calculating linear elastic material 

response, Hooke’s law is used. In a rate form, this is written as 

𝜎̇ = 𝜆𝑡𝑟𝑎𝑐𝑒(𝑑)𝛿 + 2𝜇𝑑       (2.1) 

where  and  are the elastic Lame material constants. 

https://doi.org/10.21467/books.75
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2.2.1 Basic Definitions and Assumptions 

Some definitions and assumptions are outlined here. In Figure 2.1, which geometrically depicts 

the yield surface in deviatoric stress space, the back stress (the center of the yield surface) is 

defined by the tensor  If  is the current value of the stress, the deviatoric part of the current 

stress is 

𝑆 = 𝜎 −
1

3
𝑡𝑟𝑎𝑐𝑒(𝜎)𝛿       (2.2) 

 

Figure 2.1: Yield surface in deviatoric stress space. 

The stress difference is then measured by subtracting the backstress from the deviatoric stress 

by 

𝜉 = 𝑆 − 𝛼         (2.3) 

The magnitude of the deviatoric stress difference R is defined by 

𝑅 = ‖𝜉‖ = √𝜉 : 𝜉        (2.4) 

where the inner product of second order tensors is S : S = SijSjj. Note that if the back stress is 

zero (isotropic hardening case) the stress difference is equal to the deviatoric part of the 

current stress S. 

The von Mises yield surface is defined as 

𝑓(𝜎) =
1

2
𝜉 : 𝜉 = 𝜅2        (2.5) 

and the von Mises effective stress is defined by 

𝜎̄ = √
3

2
𝜉 : 𝜉         (2.6) 



Chapter 2: Continuum Mechanics Models and Development of VUMAT 
 
 

 
 Combined Hardening Behavior for Sheet Metal and its Application 

 7   

Since R is the magnitude of the deviatoric stress tensor when  = 0, it follows that 

𝑅 = √2𝜅 = √
2

3
𝜎̄        (2.7) 

The normal to the yield surface can be determined from Equation 2.5: 

𝑸 =
𝝏𝒇/𝝏𝝈

‖𝝏𝒇/𝝏𝝈‖
=

𝝃

𝑹
        (2.8) 

It is assumed that the strain rate can be decomposed into elastic and plastic parts by an additive 

decomposition, 

𝑑 = 𝑑𝑒𝑙 + 𝑑𝑝𝑙         (2.9) 

and that the plastic part of the strain rate is given by a normality condition, 

𝑑𝑝𝑙 = 𝛾𝑄         (2.10) 

where the scalar multiplier   is to be determined. 

A scalar measure of equivalent plastic strain rate is defined by 

𝑑̄𝑝𝑙 = √
2

3
𝑑𝑝𝑙 : 𝑑𝑝𝑙        (2.11) 

which is chosen such that 

𝜎̄𝑑̄𝑝𝑙 = 𝜎 : 𝛥 𝜀𝑝𝑙         (2.12) 

The stress is expressed in rate is assumed to be purely due to the elastic part of the strain rate 

and terms of Hooke’s law by 

𝜎̇ = 𝜆𝑡𝑟𝑎𝑐𝑒(𝑑𝑒𝑙)𝛿 + 2𝜇𝑑𝑒𝑙      (2.13) 

where  and  are the Lame constants for the material. 

In what follows, the theory of isotropic hardening, kinematic hardening, and combined 

hardening is described. 
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2.2.2 Isotropic Hardening 

In the isotropic hardening case, the back-stress is zero and the stress difference is equal to the 

deviatoric stress S. The consistency condition is written by taking the rate of Equation 2.5: 

𝑓̇(𝜎) = 2𝜅𝜅̇         (2.14) 
The consistency condition requires that the state of stress must remain on the yield surface at 

all times. The chain rule and the definition of the normal to the yield surface given by Equation 

2.8 is used to obtain 

𝑓̇(𝜎) =
𝜕𝑓

𝜕𝜎
: 𝜎̇ = ‖

𝜕𝑓

𝜕𝜎
‖ 𝑄 : 𝜎̇       (2.15) 

and from Equations 2.4 and 2.5, 

‖
𝜕𝑓

𝜕𝜎
‖ = ‖𝑆‖ = 𝑅        (2.16) 

Combining Equations 2.14, 2.15, and 2.16, 

1

𝑅
𝑆 : 𝜎̇ = 𝑅̇         (2.17) 

Note that because S is deviatoric, 𝑆 : 𝜎̇ = 𝑆 : 𝑆̇, and 

𝑆 : 𝑆̇ =
𝑑

𝑑𝑡
(

1

2
𝑆 : 𝑆) =

𝑑

𝑑𝑡
(

𝜎̄2

3
) =

2

3
𝜎̄𝜎̇     (2.18) 

Then Equation 2.17 can be written as 

𝑅̇ = √
2

3
𝜎̇̄ = √

2

3
𝐻′𝑑̄𝑝𝑙       (2.19) 

where H’ is the slope of the effective stress versus equivalent plastic strain (𝜎̄ vs. 𝜀̄𝑝𝑙). 

This may be derived from uniaxial tension test data as shown in Figure 2.2. 

 

Figure 2.2: Conversion of data from a uniaxial tension test to equivalent plastic strain versus von 

Mises stress. 
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The consistency condition (Equation 2.17) and Equation 2.19 result in 

√
2

3
𝐻′𝑑̄𝑝𝑙 = 𝑄 : 𝜎̇       (2.20) 

The trial elastic stress rate 𝜎̇𝑡𝑟 is defined by 

𝜎̇𝑡𝑟 = 𝐶 : 𝑑        (2.21) 

where C is the fourth-order tensor of elastic coefficients defined by Equation 2.13. Combining 

the strain rate decomposition defined in Equation 2.9 with Equations 2.20 and 2.21 yields 

√
2

3
𝐻′𝑑̄𝑝𝑙 = 𝑄 : 𝜎̇𝑡𝑟 − 𝑄 : 𝐶 : 𝑑𝑝𝑙      (2.22)  

Since Q is deviatoric, C: Q = Q and Q: C: Q = 2. Then using the normality condition 

(Equation 2.10), the definition of equivalent plastic strain (Equation 2.11), and Equation 2.22, 

2

3
𝐻′𝛾 = 𝑄 : 𝜎̇𝑡𝑟 − 2𝜇𝛾       (2.23) 

and since Q is deviatoric (𝑄 : 𝜎̇𝑡𝑟 = 2𝜇𝑄 : 𝑑),  is determined from Equation 2.23 as 

𝛾 =
1

(1+
𝐻′

3𝜇
)

𝑄 : 𝑑        (2.24) 

The current normal to the yield surface Q and the total strain rate d are known quantities. 

Hence, from Equation 2.24,  can be determined and then used in Equation 2.10 to calculate 

the plastic part of the strain rate. With the additive strain rate decomposition and the elastic 

stress rate of Equations 2.9 and 2.13, this completes the definition of the rate Equations. 

The means of integrating the rate Equations, subject to the constraint that the stress must 

remain on the yield surface, still remains to be explained. How that is accomplished will be 

shown in Section 2.3.2. 

2.2.3 Kinematic Hardening 

For kinematic hardening, the von Mises yield condition is written in terms of the stress 

difference𝜉: 

𝑓(𝜉) =
1

2
𝜉 : 𝜉 = 𝜅2

       (2.25) 

It is important to remember that both 𝜉 and the back stress  are deviatoric tensors. 

The consistency condition for kinematic hardening is written as 

𝑓̇(𝜉) = 0        (2.26) 
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because the size of the yield surface does not grow with kinematic hardening (𝜅̇ = 0). 

Using the chain rule on Equation 2.26, and 

𝜕𝑓

𝜕𝜉
: 𝜉̇ = 0        (2.27) 

𝜕𝑓

𝜕𝜉
= ‖

𝜕𝑓

𝜕𝜉
‖ 𝑄 = 𝑅𝑄       (2.28) 

Combining Equations 2.27 and 2.28 and assuming that R # 0, 

𝑄 : 𝜉̇ = 0         (2.29) 
or 

𝑄 :( 𝑆̇ − 𝛼̇) = 0        (2.30) 
A geometric interpretation of Equation 2.30 is shown in Figure 2.3 in which the back-stress 

moves in a direction parallel to the normal to the yield surface. 

Figure 2.3: Geometric interpretation of the consistency condition for kinematic hardening. 

The back-stress rate 𝛼̇ must now be defined. For the isotropic hardening case (Equation 2.20), 

𝑄 : 𝜎̇ = √
2

3
𝐻′𝑑̄𝑝𝑙 =

2

3
𝐻′𝛾      (2.31) 

The kinematic hardening condition assumes that 

𝛼̇ = 𝛷𝑑𝑝𝑙 = 𝛷𝛾𝑄       (2.32) 

where 𝛷 is a material parameter. If 𝛷 is chosen to be (2/3) H’, Equations 2.32 and 2.30 give 

a result identical to the isotropic hardening case (Equation 2.31). Hence, either Equation 2.31 

or 2.32 gives us a scalar condition on𝛼̇. Both of these are assumptions and must be shown to 

be reasonable. Experience with material models based on these assumptions has shown that, 

in fact, they are reasonable representations of material behavior. 
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Using Equation 2.32, Equation 2.9 (the strain rate decomposition), and Equation 2.13 (the 

elastic stress rate) in Equation 2.30 (the consistency condition for kinematic hardening) gives 

𝑄 :(𝜎̇𝑡𝑟 − 𝐶 : 𝑑𝑝𝑙 ) = 𝑄 :
2

3
𝐻′𝛾𝑄      (2.33) 

Using the normality condition (𝑑𝑝𝑙 = 𝛾𝑄) and the fact that Q is deviatoric, C: Q = Q. 

Solving Equation 2.33 for  then gives 

𝛾 =
1

(1+
𝐻′

3𝜇
)

𝑄 : 𝑑        (2.34) 

which is the same result as that of the isotropic hardening case. 

2.2.4 Combined Isotropic and Kinematic Hardening 

For the combined hardening case, a scalar parameter  is defined as ranging from 0 to 1, which 

determines the relative amount of each type of hardening. Figure 2.4 illustrates the uniaxial 

response to reversed loading that results from different choices of . When  = 0, only 

kinematic hardening occurs, and when  = 1, only isotropic hardening occurs. 

Figure 2.4: Effect of the hardening parameter  on uni-axial response. 

The results derived for the independent hardening cases are multiplied by the appropriate 

fraction for each type of hardening. Equations 2.19 and 2.32 are rewritten as 

𝑅 = √
2

3
𝐻′𝑑̄𝑝𝑙𝛽        (2.35) 

𝛼̇ =
2

3
𝐻′𝑑𝑝𝑙(1 − 𝛽) =

2

3
𝐻′𝛾𝑄(1 − 𝛽)     (2.36) 

As before, the consistency condition is 

𝑄 : 𝜉̇ = 𝑅̇         (2.37) 
or 

𝑄 :( 𝑆̇ − 𝛼̇) = √
2

3
𝐻′𝑑̄𝑝𝑙𝛽      (2.38) 



Chapter 2: Continuum Mechanics Models and Development of VUMAT 
 
 

 
 Combined Hardening Behavior for Sheet Metal and its Application 

 12   

Using the elastic stress rate, the additive strain rate decomposition, and the normality 

condition, 𝑄 : 𝑆̇ = 𝑄 :( 𝜎̇𝑡𝑟 − 𝛾𝐶 : 𝑄) Together with Equations 2.36 and 2.11, this 

transforms Equation 2.38 into 

𝑄 : 𝜎̇𝑡𝑟 − 𝛾𝑄 : 𝐶 : 𝑄 −
2

3
𝐻′𝛾𝑄(1 − 𝛽)𝑄 : 𝑄 = √

2

3
𝐻′𝛽√

2

3
(𝛾𝑄) :( 𝛾𝑄) (2.39) 

Solving for , 

𝛾 =
1

(1+
𝐻′

3𝜇
)

𝑄 : 𝑑        (2.40) 

which is the same result as was obtained for each of the independent cases. 

The following is a summary of the governing Equations for the combined theory: 

𝜎̇ = 𝐶 :( 𝑑 − 𝑑𝑝𝑙) = 𝜎̇𝑡𝑟 − 2𝜇𝛾𝑄     (2.41) 

𝑅̇ = 𝛽√
2

3
𝐻′𝑑̄𝑝𝑙 = 𝛽

2

3
𝐻′𝛾      (2.42) 

𝛼̇ = (1 − 𝛽)
2

3
𝐻′𝑑𝑝𝑙       (2.43) 








=

2

2

)(),(

)(),(0





fifplasticQ

fifelastic
d pl     (2.44) 

𝛾 =
1

(1+
𝐻′

3𝜇
)

𝑄 : 𝑑        (2.45) 

𝑄 =
𝜕𝑓/𝜕𝜎

‖𝜕𝑓/𝜕𝜎‖
=

𝜉

𝑅
       (2.46) 

 Implementation of Combined Hardening Law and Development of VUMAT 

The constitutive model presented in the previous section was implemented in the ABAQUS, 

a general-purpose finite element program [32]. This code provides a general interface for user 

programmed constitutive models through a “user subroutine” (VUMAT for 

ABAQUS/Explicit). As discussed above, we develop our own user subroutine because the 

versions of hardening behavior models in ABAQUS/Explicit are not flexible enough. Figure 

2.5 shows schematically the integration procedure in ABAQUS/Explicit with a VUMAT. For 

each time step, ABAQUS integrates the Equations of equilibriums based on the stress state at 

the beginning of the step at each integration point and provides the deformation gradient for 

VUMAT subroutine. VUMAT then finishes the integration of the constitutive model and 

updates the stress and state variable for each integration point. With the information that 

VUMAT provides, ABAQUS can then continue the calculation for the next time step. 
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Figure 2.5: ABAQUS and VUMAT subroutine. 

2.3.1 Derivation of the Constitutive Equations Elasticity 

A basic assumption of elastic-plastic models is that the deformation can be divided into an 

elastic part and an inelastic (plastic) part. There are mainly two methods of decomposition of 

kinematics: (a) multiplicative decomposition F = Fel Fpl, in which it requires that the plastic 

deformation gradient Fpl (9 elements) is stored as a state variable for all integration points. (b) 

additive decomposition: 𝛥𝜀 = 𝛥𝜀𝑒𝑙 + 𝛥𝜀𝑝𝑙where 𝛥𝜀is the total strain increment, 𝛥𝜀𝑒𝑙 is 

the increment of the elastic strain, and 𝛥𝜀𝑝𝑙  is the increment of inelastic strain. The additive 

decomposition is adequate when the elastic strains are small. For a linear and isotropic 

material: 

𝛥𝜎 = 𝐶𝛥𝜀𝑒𝑙 = 𝐶(𝛥𝜀 − 𝛥𝜀𝑝𝑙) with 𝐶 ≡ 2𝐺𝐼 + (𝐾 − 2𝐺/3)𝛿 : 𝛿 (2.47) 
where C is the forth order elasticity tensor, I and δ are respectively the forth and second order 

identity tensor, G and K are the shear modulus and bulk modulus respectively which are 
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functions of powder porosity. For isotropic materials, 𝐺 =
𝐸

2(1+𝜈)
 and𝐾 =

𝐸

3(1−2𝜈)
 where 

E and ν are Young’s modulus and Poisson’s ratio, respectively. 

Plasticity: The evolution Equation for the plastic part of the deformation gradient (“flow 

rule”) is given by 𝛥𝜀̄𝑝𝑙 = 𝛥𝛾𝑄 where, 𝛥𝛾 will be determined in Section 2.3.2. The details 

of time integration procedure are discussed below. 

2.3.2 Integration procedure 

For a typical time step, our VUMAT uses explicit Euler algorithm (Euler forward) to integrate 

stresses and internal state variable. The time increment is limited by the overall stability limit 

of the explicit integration of the Equations of motion. This is usually more restrictive than the 

stability limit of the stress integration in the VUMAT. Other integration algorithms are also 

can be used, such as implicit Euler algorithm (Euler backward) [33, 34] or semi-implicit Euler 

algorithm [35]. Since the stability constrain limits the overall time increment, explicit and semi-

explicit methods (i.e. not iterative methods) are more efficient than fully implicit which are 

more appropriate for large time steps and plastic strain increments. The VUMAT uses the 

stress and internal variables at the beginning of an increment and the strain increment provided 

by ABAQUS and needs to predict the stress at the end of the increment, as well as the new 

values of the internal state variables. 

The increment of strain across a time step Δt = tn+1 −tn is 

𝛥𝜀𝑛+1 = 𝛥𝜀𝑛+1
𝑒𝑙 + 𝛥𝜀𝑛+1

𝑝𝑙
      (2.48) 

The finite element algorithm requires an incremental form of Equations 2.41 through 2.46. 

Additionally, an algorithm must be used that integrates the incremental Equations subject to 

the constraint that the stress remains on the yield surface. 

The incremental analogs of Equations 2.41 through 2.43 are 

𝜎𝑛+1 = 𝜎𝑛+1
𝑡𝑟 − 2𝜇𝛥𝛾𝑄       (2.49) 

𝑅𝑛+1 = 𝑅 +𝑛
2

3
𝛽𝐻′𝛥𝛾       (2.50) 

𝛼𝑛+1 = 𝛼𝑛 + (1 − 𝛽)
2

3
𝛥𝛾𝐻′𝑄      (2.51) 

where 𝛥𝛾 represents the product of the time increment and the equivalent plastic strain rate 

(𝛥𝛾 = 𝛾𝛥𝑡) The subscripts n and n + 1 refer to the beginning and end of a time step, 

respectively; H, the slope of the uniaxial yield stress versus the plastic strain curve, is calculated 

by Equations (2.52), and  the scalar parameter, is defined as ranging from 0 to 1. When  = 
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0, only kinematic hardening occurs, and when  =1, only isotropic hardening occurs. For 

isotropic/kinematic hardening,  is determined by comparing cyclic tensile curves between 

experiment data and simulation data.   

𝐻 =
𝑑𝜎̄

𝑑𝜀̄
= 𝐾𝑛(𝜀0 + 𝜀𝑝̄𝑙)

𝑛−1
      (2.52) 

For nonlinear isotropic/kinematic hardening model, the size of yield surface was modified as 

a function of equivalent plastic strain 𝜀𝑃̄ and has the relationship with Swift’s work-hardening 

law Equation (2.53) following Equation (2.54) 

 𝜎̄(𝜀𝑝̄𝑙) = 𝐾(𝜀0 + 𝜀𝑝̄𝑙)𝑛 ⥂       (2.53) 

𝜎̄𝑌(𝜀𝑝̄𝑙) = 𝜎̄(𝜀𝑝̄𝑙) − 𝐻𝜀𝑝̄𝑙       (2.54) 

An incremental analog is needed for the rate forms of the consistency condition given by 

Equations 2.14, 2.26, and 2.38. At the end of the time step, the stress state must be on the 

yield surface. Hence, the incremental consistency condition is 

𝛼𝑛+1 + 𝑅𝑛+1𝑄 = 𝑆𝑛+1        (2.55) 

Equation 2.50 is depicted in Figure 2.6. 

 

Figure 2.6: Geometric interpretation of the incremental form of the consistency Condition for 

combined hardening. 

Substituting the definitions given by Equations 2.49 through 2.50 into the consistency 

condition of Equation 2.55, 

[𝛼𝑛 + (1 − 𝛽)
2

3
𝐻′𝛥𝛾𝑄] + [𝑅𝑛 +

2

3
𝛽𝐻′𝛥𝛾] 𝑄 = 𝑆𝑛+1

𝑡𝑟 − 2𝜇𝛥𝛾𝑄  (2.56) 
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Taking the tensor product of both sides of Equation 2.56 with Q and solving for𝛥𝛾 , 

𝛥𝛾 =
1

2𝜇

1

(1+
𝐻′

3𝜇
)

(‖𝜉𝑛+1
𝑡𝑟 ‖ − 𝑅𝑛)      (2.57) 

It follows from Equation 2.57 that the plastic strain increment is proportional to the 

magnitude of the excursion of the elastic trial stress past the yield surface (see Figure 2.6). 

Using the result of Equation 2.57 in Equations 2.49 through 2.51 completes the algorithm. In 

addition, 

 𝛥𝑑𝑝𝑙 = 𝛥𝛾𝑄         (2.58) 

and 

𝛥𝑑̄𝑝𝑙 = √
2

3
𝛥𝛾        (2.59) 

Using Equation 2.57 in Equation 2.49 shows that the final stress is calculated by returning the 

elastic trial stress radially to the yield surface at the end of the time step (hence the name Radial 

Return Method). Estimates of the accuracy of this method and other methods for similarly 

integrating the rate Equations are available in Krieg and Krieg [28] and Schreyer et al. [29]. 

The radial return correction (the last term in Equation 2.49) is purely deviatoric. The summary 

of numerical integration algorithm of model is depicted in Figure 2.7. 

Figure 2.7: Geometric interpretation of the radial returned correction. 

2.3.3 Verification of VUMAT subroutine 

Above constitutive model is implemented into a commercial finite element program 

ABAQUS/Explicit via VUMAT user material for the uni-axial tension-compression and 

compression-tension tests with standard ASTM specimens for material of magnesium alloy 
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sheet which having rectangular cross-section of 13 mm width by 3.2 thickness and a gage 

length of 50 mm. in order to prevent buckling occurrence, a test method developed by Boger 

et al. [9], which relies on through-thickness sheet stabilization to avoid buckling, was used to 

extend the attainable strain range of Mg sheet in compression to approximately −0.08. A 

schematic of the novel tension/compression test [9] and the sample dimensions are shown in 

Figure 2.8 (a) two flat steel plates and a hydraulic cylinder system were used to provide side 

force to support the exaggerated dog-bone specimen. Side forces of 12 kN were used to 

stabilize the sheet sample. Figure 2.8 (b) shows the finite-element model of ABAQUS version 

6.5 for test process. Here, the blank modeled using solid elements C3D8R, and the flat steel 

plate modeled using rigid surface-elements R3D4.  

 

Figure 2.8: Schematic of the novel tension/compression test [9] 

The average element size of the solid elements was about 1mm in width, 2mm in length, and 

1mm in height. Meanwhile, the average element size of the rigid surface-elements was about 

2 mm in width, and 2 mm in length. The friction coefficient  at the blank/flat plate interface, 

2=0.1, was assumed for all the simulations. The other material parameters are listed in Table 

2.1. 

Table 2.1: Mechanical properties of tested material (Magnesium alloy sheet) 

Material AZ31B 

Density (r, kg/cm3) 1.77e-06 

Young’s modulus (E, kN/cm2) 45000 

Possion’s ratio 0.35 

Tension yield stress (MPa) (𝜎𝑌
𝑇) 220 

Compression yield stress (MPa) (𝜎𝑌
𝐶) 120 

    0.005 

K (MPa) 365.09 

n 0.124 
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Figure 2.9 shows the comparisons between the FE simulation and experiment results. The 

best fit for uni-axial tensile test and Bauschinger effect was chosen with the scalar parameter 

 of 0.5. However, there are discrepancies between theoretical models and the test data in 

others zone. Therefore, in this chapter we have modified the hardening law to predict correctly 

behavior of stress-strain curves at reversed load for Mg alloy and also all others kind of 

materials. 

Figure 2.9: The comparisons between the experiment result and FE simulation results of 

combined kinematic/isotropic hardening. 

2.3.4 A Modification of Combined Non-linear Hardening 

As shown in Figure 2.9, when  changes from 0.0 to 1.0 the directions of cyclic tensile curves 

will be changed. It means that, if we can present  as a function of equivalent strain then we 

can predict correctly the shapes of stress-strain curves at compression and reversed stress. In 

this study, we proposed  as exponential function of equivalent strain. In compression stress, 

the scalar parameter  is expressed as below: 

𝛽𝐶 = 𝛽0 − 𝐹(𝜀
𝑝𝑙(𝐶)

)𝑚       (2.60) 

where 0 is the initial direction of stress-strain curves when compression stress occurs. Here, 

0 = 1 is chosen to follow isotropic hardening direction. F and m are determined by fitting the 

generated curve from simulation with experiment data and chosen the best fit as F of 2.016e07 

and m of 5 for Mg alloy sheet.  
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In case of reversed stress occurrence for compression-tension tests, as depict in Figure 2.9, 

the curve should be divided by three sections. The first section is formulated as Equation 

(2.61)  

𝛽𝑅1
𝐶−𝑇 = 𝛽0 − 𝐹1(𝜀𝑅

𝑝𝑙(𝐶−𝑇)
)𝑚1      (2.61) 

here, 0 = 1, F1 and m1 was estimated as 1.952e08 and 5 for Mg alloy sheet, respectively. The 

second section is expressed as Equation (2.62) when𝜀𝑅
𝑝𝑙(𝐶−𝑇)

 is greater than 0.04 mm.  

𝛽𝑅2
𝐶−𝑇 = 𝐹2(𝜀𝑅

𝑝𝑙(𝐶−𝑇)
)𝑚2       (2.62) 

Similarly, F2 and m2 was estimated as 1.53e03 and 0.2 for Mg alloy sheet, respectively. The 

third section is generated when 𝛽𝑅2
𝐶−𝑇reaches   = 0.5 of fitting curve for uni-axial tensile test 

then 𝛽𝑅2
𝐶−𝑇 = 0.5.  

Figure 2.10 (a) shows the comparison of the measured continuous uni-axial tension-

compression (T-C) and compression-tension (C–T) tests to the results calculated from the 

finite element simulations with proposed models. The results of proposed model are good 

agreement with measurements. Figure 2.10 (b) present the results of tension-compression (T-

C) and compression-tension (C–T) FE simulation with various of pre-strain. To investigate 

this hardening model, finite element analysis of three-point bending-unbending test for the 

magnesium alloy sheet modeled using solid elements C3D8R is validated. The simulation 

results are depicted and plotted in Figure 2.11. In FE simulation result of three-point bending-

unbending for solid elements, we can check tension-compression and compression-tension 

curves for correlative elements at the same time. The proposed hardening law simulates 

forward bending-unbending quite well comparing with tension-compression and 

compression-tension test in Figure 2.10  

    

        (a)                                                                  (b) 
Figure 2.10: Uni-axial tension-compression (T-C) and compression-tension (C–T) simulation 

results of proposed model comparing with experiment data (a) and with various of pre-strain (b) 
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Figure 2.11: FE simulation results for three-point bending-unbending process 
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Chapter 3: Application of Proposed Hardening Model to 

Predict Fracture and Improve Press Formability of Door Hinge 

 

 Introduction 

Door hinges are a key product in the automotive industry, and their functions include not only 

opening and closing the door or keeping the door open at a certain angle, but also reducing 

passenger trauma in the case of a collision. Car door hinges are produced by punching and 

then forming a plate to obtain the desired geometry. Door hinges can take many shapes, 

depending on the type of automobile, front or rear door, designer, and producer. In addition, 

there are many processing parameters that contribute to the formability of a door hinge, such 

as the material properties, forming conditions, geometric shapes of the die and punch, and 

geometric shapes of the blanks etc., which in turn determine the press formability, as regards 

the thickness variation, and blank failure after the forming. However, due to the increasing 

demand for light-weight, high-strength and corrosion-resistant materials, many new materials 

have been developed for application in automobiles. Yet, these materials, especially high-

strength steel sheet, tend to have less formability than the conventional materials used for 

sheet forming, resulting in the frequent failure of door hinge products. When manufacturing 

a door hinge, as shown in Figure 3.1, product failure frequently occurs in the critical area when 

subjected to serious strain during the forming process and found to be prone to internal or 

superficial micro-defects due to excessive tensile stress [36]. This initial damage and its growth 

then cause quality problems, such as necking and fractures, due to ductile tearing of the sheet.  

 
Figure 3.1: Typical failure of a door hinge in critical area 

https://doi.org/10.21467/books.75
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To predict material fractures several researches had been proposed [37, 38]. Among the 

various methods, Clift et al. [39] concluded that the existing ductile fracture criteria were more 

accurate than other methods. To improve the formability of sheet material, Kim and Park [40] 

used FE simulations according to the orthogonal array of Taguchi’s method [41-43] to 

determine the effect of forming variables on the stamping formability and investigate the effect 

of design variables on the quality characteristics of the product. Nguyen et al. [44] improved 

the press formability of a door hinge by changing the shape of the concerned area of the blank 

based on FE simulations. Furthermore, to improve the efficiency of sheet metal forming 

optimization, the meta-modeling technique is introduced. The meta-modeling technique is a 

method for replacing a complex model by an approximate one based on results calculated at 

various samples in the design space. Several meta-modeling techniques will be effective for 

the engineering optimization. These methods have been reviewed by Wang and Shan [45] in 

detail. See other literatures [46] and applications [48, 49] for further meta-modeling techniques. 

Accordingly, this application improves the door hinge press formability by changing the 

geometric shape of the die and bead punch in the concerned area. Fracture prediction using 

the finite element method is an easy and efficient way to apply ductile fracture criteria and 

determine the influence of changing the geometric parameters of the die and bead punch. In 

the near future studies, meta-modeling techniques will be applied to solve optimization 

problems in a certain design space and having certain constraints. 

In this application, the forming process of a door hinge is simulated using ABAQUS/Explicit 

finite element code [32]. As the ductile failure criterion, the Oyane fracture criterion [50] via 

VUMAT user material based 

on a combined isotropic and 

kinematic hardening law is 

applied to improve the press 

formability of the door hinge. 

It is show to be a realistic and 

cost effective method. The 

FE simulation result for a 

cracked test sample are 

presented in Figure 3.2, 

where integral value I was 

calculated from the definition 

of the accumulated damage 

according to the Oyane 

ductile criterion.  

Figure 3.2: Deformed shape in finite element simulation, where maximum of 

integral value I was 1.343 in concerned area 
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The effect of the die and bead punch geometries are then investigated to determine their 

influence on the press formability and the results demonstrate the ability to predict when and 

where ductile damage will appear in the workpiece during the forming operation. Finally, the 

improved geometry is presented according to Taguchi’s experimental technique to achieve the 

improved shape for the concerned area in the die and bead punch. 

 Finite element procedures 

3.2.1  Materials 

Table 3.1 shows the mechanical properties of the blank, SAPH-440 sheet steel with a thickness 

of 5mm. The parameters characterizing the uniaxial-stress-plastic-strain response of the 

material used in the FE simulations are also given in the Table in terms of the parameters in 

Swift’s work-hardening law [51], using the following expression:  

 𝜎̄ = 𝐾(𝜀0 + 𝜀𝑃̄)𝑛       (1)  

Where K is the plastic coefficient, n is the work-hardening exponent, and 𝜎̄, 𝜀𝑃̄, 𝜀0are the 

equivalent stress, equivalent strain, and yield strain, respectively. 

Table 3.1: Mechanical properties of tested material (SAPH-440) 

Material SAPH-440 

Density ( kg/mm3) 7.8e-09 

Young’s modulus (E, kN/mm2) 210 

Tensile strength (MPa) 380 

 0.0078 

K (MPa) 832.85 

n-value 0.182 

3.2.2 Ductile fracture criterion 

Based on various hypotheses, certain criteria have already been proposed for ductile fractures 

[39, 52]. Oyane et al. [50] proposed a criterion allowing for the history of the hydrostatic stress 

affecting the occurrence of a ductile fracture, and this has been widely applied in the field of 

bulk forming with a high reliability [50, 52]. This criterion has also been used by Takuda et al. 

[53] to predict fracture initiation for the deep drawing processes of laminated composite 

sheets. The results were successful for the fracture prediction. Yet, it should be mentioned 

that the application of the ductile fracture criterion is more effective for low ductility materials. 

Thus, in the present study, the criterion of Oyane et al. [50] is employed in Equation (3.2): 

∫ (
𝜎𝑚

𝜎̄
+ 𝐶1)

𝜀̄𝑓

0
𝑑𝜀̄ = 𝐶2       () 

where𝜀𝑓̄is the equivalent strain at which the fracture occurs, σm is the hydrostatic stress, 𝜎̄ is 

the equivalent stress, 𝜀̄is the equivalent strain, and C1, C2 are the material constants. 
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To determine the material constants C1, C2 in Equation (2), destructive tests have to be 

operated under at least two types of stress conditions. Thus, the present study refers to the 

testing results of Ko et al. [54], where C1, C2 are simply determined by uniaxial and plane-strain 

tension tests [53]. The fracture strain for uniaxial tension and a plane strain state using a dome 

test was 0.7156 and 0.5686, respectively. From this result, the material constants C1, and C2 

for the ductile fracture criterion were calculated as 1.9438, and 2.3831, respectively. 

3.2.3 Combination of finite element simulation and criteria for ductile fracture 

Figure 3.3 shows the finite-element model of ABAQUS version 6.5 for the forming test 

process. Here, the punch and die model were made from the shape of the product using 

CATIA software, the blank modeled using solid elements C3D8R, and the punch and die 

modeled using rigid 

surface-elements R3D4 

with three integration 

points. Throughout this 

study, a uniform mesh was 

used for both the solid and 

rigid surface-elements. The 

average element size of the 

solid elements was about 

1mm in width, 1mm in 

length, and 1mm in height. 

Meanwhile, the average 

element size of the rigid 

surface-elements was 

about 1 mm in width, and 

1 mm in length. 

Figure 3.3: Finite element model for test simulation 

The friction behavior of the blank-die/blank-punch was modeled using the Coulomb friction 

law. The friction coefficient 1 of the blank at the blank-die interface was measured using an 

automatic draw bead simulation [40], which was developed to simulate the friction state of a 

specimen under a drawing deformation mode. The test results revealed that the friction 

coefficient at the blank-die interface were within the range of 1=0.1 to 0.2. However, for the 

friction coefficient 2 at the blank/punch interface, 2=0.25, was assumed for all the 

simulations as in Reference [44]. 

In the simulation, for an elastic/plastic material with a combination of isotropic and kinematic 

hardening that obeys the von Mises yield criterion, the Equations (2.48-2.59) are valid if the 

strain rate and stress rate remain constant during a finite yet very small time increment Δt. 

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V49-4GNTFXD-1&_mathId=mml9&_user=178164&_cdi=5753&_rdoc=10&_ArticleListID=777735447&_acct=C000013158&_version=1&_userid=178164&md5=6a6105ac6bd70d3a8ebe48cf452146b9
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The value for 𝛥𝛾of Equation (2.57) is used in the incremental Equation to 

determine𝜎𝑛𝑒𝑤, 𝜎𝑛𝑒𝑤
𝑚 , and 𝜀̄𝑝𝑙 . These formulations are combined with the criterion of 

Oyane in Equation (3.2) and coded into a VUMAT subroutine, for use in ABAQUS/Explicit. 

When rewriting the criteria for a ductile fracture in Equation (3.2), the following integral is 

obtained: 

𝐼 =
1

𝐶2
∫ (

𝜎𝑚

𝜎̄
+ 𝐶1)

𝜀̄𝑓

0
𝑑𝜀̄      () 

The histories of stress and strain in each element during forming are calculated using the FEM, 

and the ductile fracture integral I in Equation (3.3) is obtained for each element. When the 

integral value I of Equation (3.3) reaches 1.0, a fracture will occur. This ductile fracture value 

I can be calculated for every finite element during the forming process. Figure 3.4 shows the 

general updating flow-chart of the VUMAT subroutine implemented in ABAQUS. 

 

 

Figure 3.4: The general updating flow-chart of subroutine 
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 Taguchi’s Orthogonal Array  

When manufacturing a door hinge manufacturing, fractures tend to occur near the punch 

corner of the blank. The reason for this is that the high tensile stress and equivalent plastic 

strain at the punch corner are larger than those in the other zones of the blank. When changing 

the geometry of the die and bead punch in the concerned area, it was found that the magnitude 

of the von-Mises stress and equivalent plastic strain were also changed. Therefore, the integral 

value I was changed. Thus, it was concluded that the geometry of the die and bead punch for 

the concerned area in the blank could be improved.  

When using this characteristic, the problem becomes a smaller-the-better type problem 

according to the Taguchi method, which means the smaller the integral value I, the better the 

press formability. 

The signal-to-noise ratio (S/N ratio) defined according to the Taguchi method is: 

 𝜂𝑖(𝑑𝐵) = −10 𝑙𝑜𝑔10( 𝐼2 )         (3.4) 

where η denotes the observed value (unit: dB). Since the maximizing procedure for the S/N 

ratio minimizes the press formability, the best conditions can be obtained by maximizing (i). 

The factors to be considered here, to establish their effects on the press formability, are the 

die corner radius (R), the declination of the bead punch (a), and the peak angle of the bead 

punch (b).  

Figure 3.5 presents the definition of these three factors, while their selected levels are listed in 

Table 3.2.  

 

Figure 3.5: Definition of factors in concerned area 

Table 3.2: Factors and their levels in FEM simulation 

Factors Level 

1 2 3 

A (R mm) 10 15 20 

B (a ) 14 22 30 

C (b ) 70 90 110 
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As the FE simulation using the three-level factors, an L9 array can indeed be used to design 

the experiment. Therefore, a minimum of nine tests were required to investigate the effect on 

the FE simulation. Table 3.3 shows the L9 orthogonal array chosen from Taguchi’s standard-

orthogonal-array Table. The number for each column is related to the level number for each 

factor. In this study, only the individual effects of each factor on the FE simulation were 

investigated, without considering the interactions between each factor. 

Table 3.3: Taguchi’s L9 orthogonal array for simulations 

Case A (R mm) B (a ) C (b ) 

1 1(10) 1(14) 1(70) 

2 1(10) 2(22) 2(90) 

3 1(10) 3(30) 3(110) 

4 2(15) 1(14) 2(90) 

5 2(15) 2(22) 3(110) 

6 2(15) 3(30) 1(70) 

7 3(20) 1(14) 3(110) 

8 3(20) 2(22) 1(70) 

9 3(20) 3(30) 2(90) 

 Results and Discussion 

When the softening property is used in constitutive models, the stress-strain relation defined 

in FE simulation must be adjusted with respect to element size, keeping the fracture energy 

constant. This adjustment of the stress strain relation with the element size is a way of 

incorporating fracture mechanics theory into finite element computation. If all elements were 

given the same softening stress-strain relation regardless of element size, the result would be 

mesh-dependent due to the inconsistent fracture energy treatment. On the contrary, when the 

material property can be defined as plasticity, the redistribution of stresses can occur as a result 

of plastic flow. Failure is define as occurring when the entire material volume reaches 

simultaneous yielding. In such a case, the constitutive models can be made independent of the 

element size. In our research, after several times reduced the mesh size to carry out the Table 

and reliable FE simulation results, we used the average element size of the blank element was 

about 1mm in width, 1mm in length, and 1mm in height. This mesh size is small enough to 

analyze the plastic deformation and failure of door hinge. The FE simulation results for a 

cracked test sample with the von Mises stress (𝜎̄), equivalent plastic strain (𝜀̄), and the 

maximum ductile fracture value I (SDV9) calculated from Equation (3.3) via VUMAT user 

material based on isotropic hardening, kinematic hardening, and a combined 

isotropic/kinematic hardening law are presented in Figures 3.6(a), 3.6(b), and 3.6(c), 

respectively.  
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Figure 3.6: Deformed shapes of product failure in finite element simulation based on (a) isotropic 

hardening, (b) kinematic hardening, and (c) combined isotropic/kinematic hardening law. 

The results show that the maximum ductile fracture values I were not so different, yet the 

maximum von Mises stresses (𝜎̄) in the concerned area for all the three hardening models 

were distinctly different. From the combined isotropic/kinematic hardening law, the von 

Mises stress in the 

concerned area was closest 

to the equivalent stress of 

tensile failure. So, the 

combined isotropic/ 

kinematic hardening law 

will give better result when 

compared to other two 

hardening models. Figure 

3.7 shows the evolutional 

stress state at the element 

having maximum value of 

ductile fracture value I in 

the concerned area with 

the combined isotropic/ 

kinematic hardening model 

for the case of 

R(A)=10mm, a(B)=30o, 

b(C)=90o, and r(D)=5mm.  

 

 

Figure 3.7: Evolutional stress state in concerned area 
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The evolutions of the maximum and minimum principal stress state at the element having 

maximum value of ductile fracture value I in the concerned area versus time are presented in 

Figure 3.7(a). Meanwhile, Figure 3.7(b) shows the stress path in the concerned area, which was 

complicated and also reversed between forming stage 2 and 3. Therefore, this complicated, 

reversed and nonlinear stress path in the concerned area supports the use of a combined 

isotropic/kinematic hardening law to predict the fracture of a door hinge. 

In order to determine the scalar parameter , the cyclic tensile curves, obtained by FE 

simulation via VUMAT user material through changing the values of , was compared with 

experiment data and chosen the best fit as shown in Figure 3.8. The scalar parameter  for 

isotropic/kinematic hardening was estimated as 0.5. 

 

Figure 3.8: Estimation of scalar parameter () 
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Table 3.4 shows the results of the integral values I in numerical simulations based on a 

combined isotropic/kinematic hardening law for each case chosen from Taguchi’s standard-

orthogonal-array Table. The maximum value of the integral values I, i.e. the potential initial 

fracture site, appeared at the corner of the product for all cases. As mentioned before, the 

condition of failure was satisfied when and where the ductile fracture values I approached 1.0. 

For case no.2 and no.3, the ductile fracture values I were larger than 1.0, and failure appeared. 

The trends of the failure site predicted in this study were in good agreement with those in the 

actual product.  

Table 3.4: L9 orthogonal array and calculated observed values 

Case Column number and factor 

assignment 

 Ductile fracture value 

(I) 

A (R) B (a) C (b)  I 𝜂𝑖
𝑎

 (dB) 

1 1(10) 1(14) 1(70)  0.837 1.545 

2 1(10) 2(22) 2(90)  1.007 -0.061 

3 1(10) 3(30) 3(110)  1.343 -2.561 

4 2(15) 1(14) 2(90)  0.815 1.777 

5 2(15) 2(22) 3(110)  0.828 1.639 

6 2(15) 3(30) 1(70)  0.843 1.483 

7 3(20) 1(14) 3(110)  0.732 2.710 

8 3(20) 2(22) 1(70)  0.743 2.580 

9 3(20) 3(30) 2(90)  0.755 2.441 

 

According to the Taguchi’s method, an analysis of the mean (ANOM) and analysis of variance 

(ANOVA) were used to represent the relationship between the geometry factors for the 

concerned area and the observed values for the integral values I. In this experiment, the 

observed values were found to be related to the three parameters (Table 3.4). The optimization 

of the observed values was then determined through a comparison with the Taguchi signal-

to-noise (S/N) ratio. The ANOVA values calculated for the three factors and their 

corresponding three levels (tabulated in Table 3.2) were obtained using an L9 orthogonal array. 

The use of orthogonal array reduced the full factorial design down to 9 experiments from 81 

experiments, thereby decreasing the cost, time, and effort. The increase in the factor effect 

was measured using the S/N ratio of the factors. Moreover, the analysis of the mean (ANOM) 

and analysis of variance (ANOVA) for the quality characteristics provided a better 

understanding of the individual effect of each factor. The ANOVA for the different factors - 

including the level average, total variation, sum of the squares, sum of the mean squares, and 

contribution - enabled various relative quality effects to be determined. 

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V49-4FT3KMM-1&_mathId=mml102&_user=178164&_cdi=5753&_rdoc=1&_ArticleListID=777271618&_acct=C000013158&_version=1&_userid=178164&md5=4f91504ed85efca8b25940ba8948cedf
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Tables 3.5 show a summary of the calculated results. The formulation used to calculate the 

sum of the squares was as follows:  

3(𝑚𝑗1 − 𝑚)2 + 3(𝑚𝑗2 − 𝑚)2 + 3(𝑚𝑗3 − 𝑚)2                   (3.5) 

Where m is the overall mean of the i, value for the four experiments, defined as 𝑚 =
1

9
∑ 𝜂𝑖

9
𝑖=1 = 1.284, and mji is the average of  related to level i (i=1, 2, 3) of factor j given 

by 𝑚𝑗𝑖 =
1

3
∑ (𝜂𝑗)𝑖

3
𝑖=1 . 

The results of the ANOM and ANOVA for the ductile fracture values I (Table 3.5) revealed 

that the die corner radius (R), which reached 68.64%, made the major contribution to the 

overall performance. Meanwhile, the contribution percentages for the declination of the bead 

punch (a) and peak angle of the bead punch (b) were lower at 18.75% and 12.61%, respectively. 

The contribution percentage of the peak angle of bead punch (b) was the smallest at 12.61%. 

Thus, it was concluded that the die corner radius (R) factor had the most significant effect on 

the ductile fracture value I in the concerned area. 

Table 3.5: ANOM and ANOVA Table of effect on ductile fracture value (I) 

Factor Average   by Level Sum of 

Squares 

D.O.F Sum of 

mean 

squares 

Contribution 

1 2 3 

A(R) -0.359 1.633 2.577* 13.479 2 6.7395 0.6864 

B(a) 2.011* 1.386 0.454 3.683 2 1.8415 0.1875 

C(b) 1.869* 1.385 0.596 2.477 2 1.2385 0.1261 

Total    19.639 6 9.8195  

* Indicates optimum level 

 

The η (dB) of the levels for each factor were individually calculated, as shown in Table 3.4. In 

the Taguchi method, the higher the η value, the better the overall performance, meaning that 

the factor levels with the highest η value should always be selected. Accordingly, the average 

for each experimental level was calculated using the highest η value for each factor to produce 

the response Table (Table 3.5). As shown in the response Table and response graph, the 

improved conditions to maintain the ductile fracture value I successfully in the forming test 

were A3B1C1, which means R = 20 mm, a = 14o, b = 70o, and r = 5 mm. The S/N ratio for 

these improved conditions is denoted by opt and predicted as Equation (3.6):  

𝜂𝑜𝑝𝑡 = 𝑚 + (𝑚𝐴3 − 𝑚) + (𝑚𝐵1 − 𝑚) = 3.304(𝑑𝐵)              () 
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Figure 3.9 depicts the FE simulation results of the improved conditions (A3B1C1) for the press 

formability. Here, the equivalent stress, equivalent strain is decreased, and the integral value I 

has the minimum value. Figure 3.10 shows the experiment results for case No.8, where no 

crack appeared in the corner of the concerned area.  

Figure 3.9: Deformed shape in finite element simulation of optimum case, where integral value I 

was 0.725 in concerned area 

 

Figure 3.10: Case No. 8: R=20mm, a=20o, b=90o, r=5mm, I=0.748. No crack occurred in 

concerned area 
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From the above discussion, it was concluded that the use of Taguchi’s experimental array for 

the FE simulations allowed successful improvement of the geometric shape of the die and 

bead punch in the concerned area to improve the press formability. As a result, the geometric 

shape of the die and bead punch in the area of concern was improved using a die corner radius 

(R) of 20 mm, declination of the bead punch (a) of 14o, and peak angle of the bead punch (b) 

of 70o. 

 Conclusion 

To predict a fracture and improve the press formability of a door hinge, the geometric shape 

of the die and bead punch in the concerned area was improved using finite element simulations 

and then investigated by experiments. Commercial software (ABAQUS version 6.5, explicit 

formulation) with a user-defined subroutine (VUMAT) based on a combined 

isotropic/kinematic hardening model was used for the simulation according to the orthogonal 

array of Taguchi’s method. As a result, the die corner radius (R) was identified as the important 

factor for improving the press formability of the door hinge. Improved geometric shapes for 

the die and bead punch in the concerned area, consisting of a die corner radius (R) of 20 mm, 

declination of the bead punch (a) of 14o, and peak angle of the bead punch (b) of 70o, were 

also predicted to produce a better reliability compared to the original test sample. 
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Chapter 4: Study of Incremental Sheet Forming for Complex 

Shape and its Improvement 

 

 

 Introduction 

Incremental sheet forming (ISF) is an innovative process to manufacture sheet metal products 

by the (CNC) controlled movement of a simple forming tool which plastically deforms the 

blank according to the desired shape. The two main variations of incremental sheet forming 

are positive and negative forming. This refers to the side of the part that the tool works on. In 

negative forming the tool works on concave surface on the part, whereas in positive forming 

the tool moves on the convex surface. When the die has a positive geometry, the blank holder 

should be moved by hydraulic actuator in order to firmly maintain the sheet in proper working 

position; in the case of negative geometry, the blank can be fixed. Although it is a slow process, 

makes it a very suitable process for low series production, prototype manufacturing and 

complex components produced in small batches for aeronautical, automotive and medical 

applications due to the cost reduction linked to the fact that punches or dies are avoided, in 

comparison with the traditional stamping or drawing processes. This kind of process could go 

back to the conventional spinning process [55, 56] in which only axi-symmetric parts can be 

made. Besides, many other processes which can make both non-axi-symmetric parts as well as 

axi-symmetric parts have been developed. An incremental sheet forming process to make 

flanged sheet metal parts without dedicated tooling was developed by Powell et al. [57]. 

Matsubara [58] successfully formed various conic and pyramidal parts with the (NC) milling 

machine. Iseki and Kumon [59] have studied a forming limit for the incremental sheet forming 

process. They had shown that the forming limit curve (FLC) of sheet material in incremental 

sheet forming is located much higher than those based on theories of plastic instability. In 

order to investigate the influence of the main material parameters and process variables upon 

formability and improve the formability in incremental sheet forming several researches had 

been proposed [60, 61, 62]. Kim and Yang [63] proposed the double-forming technique to 

improve formability, assuming that only shear deformation occurs in the material. Recently, 

G. Hussain, and L. Gao et al. [64, 65, 66] presented an innovative method to test the thinning 

limits of sheet metals in negative incremental sheet forming along with verification of the 

https://doi.org/10.21467/books.75
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Cosine's law of thickness distribution. They also showed that the formability in single point 

incremental sheet forming can be expressed as the maximum wall angle (θmax). Besides, the 

effect of the curvature of a part's generatrix on the formability of an aluminum sheet has been 

investigated systematically to indicate that the formability increases as the radius of curvature 

decreases. Park et al. [67] studied and showed the possibility of cup incremental sheet forming 

of magnesium sheet at room temperature with rotational, where the tool rotates itself. 

When manufacturing a complex shape by incremental forming, firstly a (CAD) file of the 

completed formed part must be designed, imported to (CAM) software, and simulated to 

generate the tool path or (CL) data file. Depending on the complexity of the part, the process 

can include a basic geometry supporting die or no dies at all. The tool path contours are then 

imported and performed on a standard (CNC) mill. For this kind of process in order to 

enhance the formability of sheet material in incremental sheet forming process, there are many 

process variables to be improved, such as the material properties, forming conditions, the 

shapes of the forming tool, curvature of part, dimension of forming part, specially down-step, 

offset tool path, and spindle speed also. These factors determine the formability, as regards 

the thickness variation, and blank failure after the incremental forming. As already pointed out 

in Ambrogio et al. [68] work, the single point incremental sheet forming process mainly 

depends on geometrical and process conditions. Particularly, the accuracy of the final 

geometry is mainly influenced by the tool down step. 

Nowadays, numerical simulation is an essential tool for understanding of physical processes 

modelized by partial differential or integral Equations. After the pioneers work of finite-

element method (FEM) for rigid-plastic FEM [69, 70, 71], elastic-plastic FEM [72, 73], (FEM) 

has been successfully applied to various kinds of sheet forming processes such as stamping 

[74, 75], hydroforming [75, 76], incremental sheet forming [68, 77, 78] etc., to clarify the 

forming characteristics, predict forming defect and improve the forming process. For 

incremental sheet forming the finite element analysis was also successfully used to study the 

effect of process variable on formability of materials in incremental sheet forming. In order to 

simulate incremental sheet forming by the finite element analysis, two different approaches 

could be pursued, namely an implicit model implementing a Lagrangian formulation or an 

explicit model. As shown by Ambrogio et al. [68] the use of explicit finite element simulation 

is a realistic and cost-effective method in predicting and investigating the effect of process 

variables on formability of incremental sheet metal forming. Several other studies were 

focused on the (FEM) analysis, taking into account simple shapes. Shim and Park [77] 

performed a numerical simulation of the single layer in the forming of truncated pyramid to 

find the deformation characteristics along the tool path. Iseki [78] simulated the incremental 

sheet forming of a shell of the frustum of a quadrangular pyramid. However, almost previous 

researches have focused on simple geometry models such as rectangular, circular geometries 

or the combination of both in simulation model.   
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In this study, the incremental sheet forming process for the product of complex geometry 

shape (e.g. human face) is studied using ABAQUS/Explicit finite element code and is 

improved using Taguchi’s method. The input file was obtained by the combination of (CAM) 

and (CAE) simulation through using MATLAB programming.  Figure 4.1(a) shows the tested 

sample in which failure occurred under improper forming conditions, the tool radius of 6 mm, 

the tool down-step of 2.0 mm, and the feed rate of 400 mm/min without rotating of the tool. 

The supported die is shown in Figure 4.1(b).  

 

 

Figure 4.1: Deformed shapes in experiment of failure test sample. 

Figure 4.2 depicts (FEM) simulation results for tested sample. The effects of forming variables, 

such as tool radius, tool down-step, friction coefficient, etc. are then investigated to determine 

their influence on the formability by comparing with forming limit curve. Taguchi’s 

experimental technique is adopted to achieve the improved condition of these process 

variables.   
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(a) 

 

(b) 

Figure 4.2: The FE simulations for a failure test sample. 
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 Finite Element Simulation 

This study used the commercial software ABAQUS version 6.5-1 to simulate the forming 

process. This software can provide elastic-plastic and rigid-plastic simulations of metal 

forming in the case of a large deformation, thereby significantly reducing the cost and time 

involved in tool and die design. 

The flow pattern, equivalent stress distribution, equivalent strain distribution, and major and 

minor strains can all be simulated by (FEM). These simulation results can then be used to 

obtain the product geometric profile and material properties required. In the pre-process of 

modeling metal forming, the 3D mechanical type, geometric profile of the blank, and contact 

surfaces are constructed using the (GUI) of ABAQUS version 6.5-1. An elastic-plastic model 

is then selected and the material properties, such as Young’s modulus, Poisson’s ratio, and the 

density, are needed. The anisotropic work-hardening rule is applied in the flow rule due to 

plastic strain hardening. The changes in the Von-Mises stress, major and minor strains yielded 

on the surface are plotted. The initial conditions of the components are set-up, and the contact 

between the blank, punch, and die is defined. 

4.2.1 Geometry and FE models  

Figure 4.3 shows the finite-element model for the incremental sheet forming test process. 

Here, the tool and die model were made from the shape of the product using CATIA software, 

the blank modeled using both of shell elements S4R without VUMAT subroutine and solid 

elements C3D8R via VUMAT user material, and the punch and die modeled using rigid 

surface-elements R3D4. Throughout this study, the average element size of the blank and rigid 

tool was about 1 mm in width, and 1 mm in length; the average element size of the rigid die 

was about 2 mm in width, and 2 mm in length. 

 

Figure 4.3 Finite element model for simulation. 
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4.2.2 Materials 

Table 4.1 shows the mechanical properties of the blank, a cold rolled steel. The parameters 

characterizing the uniaxial-stress-plastic-strain response of the material used in the (FE) 

simulations are also given in the Table in terms of the parameters in Swift’s work-hardening 

law, using the expression of Equation (3.1).  

Table 4.1: Mechanical properties of tested material (Cold Rolled Steel) 

Material Cold Rolled Steel 

Density () 7.8e-06 

Young’s modulus (E) 210 

Possion’s ratio 0.3 

Tensile strength (MPa) 140 

0 0.0009 

K (MPa) 534.1 

n-value 0.274 

Lankford value Rm 1.679 

 

4.2.3 Boundary conditions, loading, and interactions 

The die was fixed in all directions. The tool was allowed to move following the tool-path which 

was obtained from (CAM) simulation. The friction behavior was modeled using the Coulomb 

friction law. The friction coefficient 1 between the blank and the punch is assumed to be the 

same as the fiction coefficient 2 between the blank and the die.  

4.2.4 Ductile fracture criterion 

In order to predict the failure of the incremental forming for complex shape the criterion of 

Oyane is employed as Equation (3.2), Here, C1, C2 are simply determined by uniaxial and plane-

strain tension tests [24]. The material constants C1, and C2 for the ductile fracture criterion 

were calculated as 0.15, and 0.76, respectively. 

 Obtained CAE input file procedures 

4.3.1 Tool path generation 

In order to obtain cutter location (CL) data for human surface, (3D) scanner is used to create 

a point cloud of geometric samples on the surface of the object. These points can be used to 

extrapolate the shape of the object. Normally, the point clouds produced by (3D) scanners 

will not be used directly. Mostly all the applications using polygonal (3D) models, (NURBS) 

surface models, or ediTable feature-based (CAD) models. The process of converting a point 

cloud into a (3D) model in any forms described above is called 'reconstruction or "modeling"'. 
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Therefore, the reconstruction and modification is performed by utilizing CATIA software to 

creat (NURBS) surface model from point cloud and scale down as 65% in order to fit with 

small experimental machine. After having (CAD) model, we proposed two methods to obtain 

(CL) data and simulation process as shown in Figure 4.4.  

 

Figure 4.4: The method to obtain CL data and simulation process. 

The first method is a basic programming method by using MALAB software. Following this 

method, initially the (CAD) model was saved to STL (standard triangulation language) file 

which consists of an unordered list of triangular facets representing the outside surface of the 

object. These triangular facets are described by a set of X, Y and Z co-ordinates for each of 

the three vertices and a unit normal vector with X, Y and Z. In order to generate inside 

intersection points of triangular which will be used to calculate cutter location (CL) at each Z 

layer of tool down-step, we first 

projected n divisions following 

radial direction from center axis 

and calculated intersection 

points of projection line and 

the planes containing three 

vertices of triangular. The 

intersection points must be 

then verified whether the 

points are insides or outsides of 

triangular as shown in Figure 

4.5 in order to get all insides.   Figure 4.5: Verification of the intersection points. 
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Figure 4.6: Calculation of cutter location (CL) points. 

Finally, as depicted in Figure 4.6 from inside intersection points we can calculate (CL) points 

following listed Equations: 

𝑐 = 𝑚 + 𝑅𝑛𝑣  

𝑡 = 𝑐 − 𝑅𝑛𝑛  

|𝐶𝐸| = |𝐶𝐺| = |𝑅𝑛𝑣𝑛𝑛| 

𝑒 = 𝑐 − |𝐶𝐸|𝑛𝑛 

|𝐸𝑇| = |𝐸 − 𝑇| 

ℎ = 𝑒 − |𝐸𝑇|𝑛𝑣  

|𝑆𝑇| =
(|𝐸𝑇|)2

|𝐻𝑇|
 

𝑐𝑙 = 𝑚 + |𝑆𝑇|𝑛𝑥𝑜𝑦         (4.1) 

where c, m, t, e, h, cl are vectors corresponding to the tip points C, M, T, E, H, CL; R is tool 

radius; nn is unit normal vector of triangular; nv is unit vertical vector; nxoy is the projective 

vector of nn into xoy plane. 

We also proposed a second method to obtain (CL) data from utilizing (CAM) software. Here, 

the (CAD) model was saved to (IGES) file and import to (CAM) software, namely 

CIMATRON E 6.0,  that are used to generate (CL) data and also define the motion of the 

machines during processing. In this software, a Z-level milling operation is selected with spiral 
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tool path strategy and out-in downward movement of the tool (Figure 4.7). After simulation, 

the (CL) file, which includes the position of tool center point followed linear and circular 

interpolation, is generated and used to modify (CAE) input file. 

 

Figure 4.7: Tool path strategy. 

4.3.2 CAE input file modifications  

As mention in the second method, (CL) file includes linear and circular interpolations of the 

position of tool center point. Linear interpolations are easy to assign the forming tool 

movement in ABAQUS. But in circular interpolations, tool center point must be rotated 

around the other center points generated by (CAM) sofware, and it seems impossible to assign 

the forming tool movement in ABAQUS. So that in this study, a procedure has been 

completed, which scans the circular interpolations and divides them into linear segments 

satisfying allowable error.  

By using ABAQUS, the forming tool movements are defined through the step module. It 

means that the movements are correlative with the steps of step module. Fortunately, there 

are more than thousand steps needed to simulate in incremental sheet forming process. If we 

operate the position of tool center point manually, it will take a lot of time and may be a chance 

of getting some manual error. So in this study, MATLAB software has been used as a 

programming tool to modify the (CL) data and also (CAE) input file. 

Because the procedures for other steps are similar except values of position coordinates of 

tool center point. So firstly, the (CAE) input file is exported to get initial (CAE) input file. 

Then the text file of (CL) data is modified to obtain all position coordinate of tool center point 

as a standard (CL) data file through a subroutine of MALAB. Finally, in order to obtain final 

(CAE) input file, another MATLAB’s subroutine had been written to add all next steps and 

assign values of tool center point from the standard (CL) data file to initial (CAE) input file 

for the correlative steps 
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 Taguchi’s Orthogonal Array  

As above mentioned, many process variables contribute to enhancing the formability of 

incremental sheet forming process. If process variables are not suitably selected, a failure will 

appear at the concerned area. In this study, tool radius (R), tool down step (H), and the friction 

coefficient () are considered as main process variables which govern the formability of 

material in incremental sheet forming. Thus, we try to verify and improve their influences on 

formability. For this kind of process, the failure was subjected to serious strain during the 

incremental sheet forming and found to be prone to internal or superficial micro-defects due 

to excessive tensile stress This initial damage and its growth then cause quality problems, such 

as necking and fractures, due to ductile tearing of the sheet. The reasons are that the high 

tensile stress and equivalent plastic strain at this area are larger than those in the other zones 

of the blank or the small difference between the major strains ( ) and the (FLC) values at the 

same point for the minor strains () at the concerned area, (Figure 4.8)(𝛥𝜀 = 𝜀𝐹𝐿𝐶 − 𝜀1). 

The forming limit curve (FLC) in incremental sheet forming will be estimated and explained 

in more detail in Section 5. When changing the process variables, it was found that the 

magnitude of the difference in the major strain (𝛥𝜀) and the integral value I also changed. 

Thus, it was concluded that the forming conditions of the product in incremental sheet 

forming could be improved.  

 

Figure 4.8: Definition of the difference of major strain (Δ). 
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In the preliminary study, the difference in the major strain(𝛥𝜀) and the integral value I were 

set as the objective functions of the incremental sheet forming process. An analysis of the 

selected objective characteristics and values of the difference in the major strain(𝛥𝜀) and the 

integral value I allowed the level of deviation to be calculated to identify which process 

variables were significant for the experiment.  

When using this quality characteristic, the problem becomes a larger-the-better type problem 

in the case of the difference in the major strain(𝛥𝜀) and smaller-the-better type problem in 

the case of ductile fracture criterion. Thus, according to the Taguchi method, the larger the 

difference in the major strain(𝛥𝜀) and the smaller the integral value I, the better the 

incremental sheet forming process. 

The signal-to-noise ratio (S/N ratio) defined according to the Taguchi method is: 

𝜂𝑖
1 = −10 𝑙𝑜𝑔10( 𝛥𝜀−2)        (4.2a) 

 𝜂𝑖
2 = −10 𝑙𝑜𝑔10( 𝐼2 )       (4.2b) 

Where η denotes the observed value (unit: dB). Since the maximizing procedure for the S/N 

ratio minimizes the press formability, the best conditions for the incremental sheet forming 

process can be obtained by maximizing (i)  

Figure 4.9 presents the definition of the three defined process variables, while their selected 

levels are listed in Table 4.2.  

 

Figure 4.9: Definition of considering parameters. 
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Table 4.2: Factors and their levels in FEM simulation 

Factors Level 

1 2 3 

A (R mm) 6 5 4 

B (H  mm) 1.4 1.0 0.7 

C () 0.20 0.15 0.10 

D (t mm) 1.0 1.0 1.0 

As the FE simulation using the three factors with three levels gave nine degrees of freedom, a 

minimum of nine tests were required to investigate the effect on the FE simulation. Table 4.3 

shows the L9 orthogonal array chosen from Taguchi’s standard-orthogonal-array Table. The 

number for each column is related to the level number for each factor. In this study, only the 

individual effects of each factor on the (FE) simulation were investigated, without considering 

the interactions between each factor. 

Table 4.3: Taguchi’s L9 orthogonal array for simulations 

Case A (R mm) B (H mm) C () D (t  mm) 

1 1(6) 1(1.4) 1(0.20) 1(1.0) 

2 1(6) 2(1.0) 2(0.15) 1(1.0) 

3 1(6) 3(0.7) 3(0.10) 1(1.0) 

4 2(5) 1(1.4) 2(0.15) 1(1.0) 

5 2(5) 2(1.0) 3(0.10) 1(1.0) 

6 2(5) 3(0.7) 1(0.20) 1(1.5) 

7 3(4) 1(1.4) 3(0.10) 1(1.0) 

8 3(4) 2(1.0) 1(0.20) 1(1.0) 

9 3(4) 3(0.7) 2(0.15) 1(1.0) 

 Estimation of FLC in incremental SHEET forming  

To estimate the forming limit curve of the sheet, some conclusions from the previous 

researchers have been mentioned as follows: 

 - Swift's diffused necking criterion [51] for thin sheets and Hill's localized necking criterion 

[79] associated with the Hill's quadratic yield function [80] are used to construct the (FLC) in 

conventional forming (FLC at necking: FLCN) for the bi-axial tensile strain zone and tensile–

compressive strain zone, respectively. So by using power law Equation (3.1), forming limit 

curve can be derived based on in-plane test (M-K model).  

- From the previous literature [59, 77], most forming limit curves in incremental sheet forming 

(FLC at fracture: FLCF) appears to be a straight line with a negative slope in the positive 

region of the minor strain. 
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However, as a pointed out by several authors [81, 82] both of (FLCN) and (FLCF) curves at 

equi-biaxial strain nearly converge at one point. Thus, in the present study, the criterion of 

Clift et al [83] is employed in Equation (4.3) in order to calculate others points of (FLCF) in 

incremental sheet forming through the relationship of major/minor strain Equation (4.4), and 

the equivalent strain function for plane stress Equation (4.5) . 

∫ 𝜎̄
𝜀̄𝑓

0
𝑑𝜀̄ = 𝐶          (4.3) 

𝛽 =
𝜀2

𝜀1
          (4.4) 

𝜀̄ =
𝑅𝑚+1

√2𝑅𝑚+1
√1 +

2𝑅𝑚

𝑅𝑚+1
𝛽 + 𝛽2𝜀1      (4.5) 

where𝜀𝑓̄is the equivalent strain at which the fracture occurs, 𝜎̄ is the equivalent stress, 𝜀̄is the 

equivalent strain, C is the material constant,  is strain ratio, Rm is Lankford value, and 

   are minor and major strains respectively. 

After substituting power law Equation (3.1) into ductile fracture criterion Equation (4.3) and 

executing integral calculus we can derive the equivalent strain at the ductile fracture as a 

constant value Equation (4.6) 

𝜀𝑓̄ = 𝐶1         (4.6) 

To determine C1 the values of strain ratio and major strain at equi-biaxial are used. The 

prediction of forming limits with the characteristic factors affecting the shape and level of the 

forming limits were implemented utilizing the algorithm developed by Son and Kim [84]. At 

equi-biaxial, the strain ratio  is 

1.0, and the fracture major strains 

for the cases of tool radius R = 6 

mm, R = 5 mm, and R = 4 mm was 

0.98, 1.03 and 1.12, respectively. 

From this result, the constant 

values C1 for the case of radius tool 

R = 6 mm, R = 5 mm and R = 4 

mm were calculated as 2.27, 2.39 

and 2.59, respectively. Finally, as 

depict in Figure 4.10, other points 

of (FLC) in incremental sheet 

forming were obtained by using 

various values of strain ratios and 

substituting into Equations (4.4), 

(4.5), and (4.6). 

Figure 4.10: Obtainment of FLC in incremental forming. 
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 Results and Discussion 

In order to determine the scalar parameter , the tensile curves, obtained by FE simulation via 

VUMAT user material through changing the values of , was compared with the stress -strain 

experiment data which obtained from uniaxial tension test and then chosen the best fit. The 

scalar parameter  for isotropic/kinematic hardening was chosen as 0.65 as showed in Figure 

4.11. 

 

Figure 4.11: Estimation of scalar parameter (). 

Table 4.4 shows the results of the difference in the major strain(𝛥𝜀) and the integral values 

I in numerical simulations based on a combined isotropic/kinematic hardening law for each 

case chosen from Taguchi’s standard-orthogonal-array Table. The maximum value of the 

integral values I and minimum value of the difference in the major strain(𝛥𝜀), i.e. the 

potential initial fracture site, appeared at the corner with large depth and slope angle value of 

the product for all cases. As mentioned before, the condition of failure was satisfied when and 

where the ductile fracture values I approached 1.0. For case no.2 and no.3, the ductile fracture 

values I were larger than 1.0, and failure appeared. The trends of the failure site predicted in 

this study were in good agreement with those in the actual product.  

 

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V49-4FT3KMM-1&_mathId=mml102&_user=178164&_cdi=5753&_rdoc=1&_ArticleListID=777271618&_acct=C000013158&_version=1&_userid=178164&md5=4f91504ed85efca8b25940ba8948cedf
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Table 4.4: L9 orthogonal array and calculated observed values 

Case Column number and factor 

assignment 

 Ductile fracture value 

(I) 

Difference in major strain (

) 

A 

(R mm) 

B 

(H mm) 

C () I 𝜂𝑖
𝑎

 (dB)  𝜂𝑖
𝑏

 (dB) 

1 1(6) 1(1.4) 1(0.20) 1.285 -2.178 -0.025 -32.041 

2 1(6) 2(1.0) 2(0.15) 1.156 -1.259 0.115 -18.786 

3 1(6) 3(0.7) 3(0.10) 1.054 -0.457 0.231 -12.729 

4 2(5) 1(1.4) 2(0.15) 1.201 -1.591 0.061 -24.293 

5 2(5) 2(1.0) 3(0.10) 1.078 -0.652 0.179 -14.943 

6 2(5) 3(0.7) 1(0.20) 0.982 0.158 0.302 -10.400 

7 3(4) 1(1.4) 3(0.10) 1.067 -0.563 0.197 -14.111 

8 3(4) 2(1.0) 1(0.20) 1.031 -0.265 0.275 -11.213 

9 3(4) 3(0.7) 2(0.15) 0.934 0.593 0.363 -8.802 

According to the Taguchi method, an analysis of the mean (ANOM) and analysis of variance 

(ANOVA) were used to represent the relationship between the geometry factors for the 

concerned area and the observed values for the difference in the major strain(𝛥𝜀) and ductile 

fracture value I. In this experiment, the observed values were found to be related to the three 

process variables (Table 4.4). The improvement of the observed values was then determined 

through a comparison with the Taguchi signal-to-noise (S/N) ratio. The (ANOVA) values 

calculated for the three factors and their corresponding three levels (tabulated in Table 4.2) 

were obtained using an L9 orthogonal array. The use of orthogonal array reduced the full 

factorial design down to 9 experiments from 81 experiments, thereby decreasing the cost, time, 

and effort. The increase in the factor effect was measured using the S/N ratio of the factors. 

Moreover, the analysis of the mean (ANOM) and analysis of variance (ANOVA) for the 

quality characteristics provided a better understanding of the individual effect of each factor. 

The (ANOVA) for the different factors - including the level average, total variation, sum of 

the squares, sum of the mean squares, and contribution - enabled various relative quality 

effects to be determined. Table 4.5 shows a summary of the calculated results.  

Table 4.5: ANOM and ANOVA Table for effect of difference in major strain(𝜟𝜺) 

Factor Average   by Level Sum of 
Squares 

D.O.F Sum of 
mean 

squares 

Contribution 

1 2 3 

A(R) -21.185 -16.545 -11.375* 144.486 2 72.243 0.338 

B(H) -23.482 -14.981 -10.643* 255.911 2 127.9555 0.598 

C() -17.885 -17.294 -13.927* 27.347** 2 13.6735 0.064 

Total    427.744 6 213.872  

* Indicates the optimum level 
** Indicates the sum of squares added to estimate the pooled error sum of squares in parentheses 




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The formulation used to calculate the sum of the squares was as follows:  

3(𝑚𝑗1 − 𝑚)2 + 3(𝑚𝑗2 − 𝑚)2 + 3(𝑚𝑗3 − 𝑚)2           (4.7) 

 Where m is the overall mean of the i, value for the nine experiments, defined as 𝑚1 =

1/9 ∑ 𝜂𝑖
29

𝑖=1 = −16.369,𝑚2 = 1/9 ∑ 𝜂𝑖
29

𝑖=1 = −0.691 and mji is the average of 

 related to level i (i=1, 2, 3) of factor j given by 𝑚𝑗𝑖 = 1/3 ∑ (𝜂𝑗)𝑖
3
𝑖=1 . 

The results of the ANOM and ANOVA for the difference in the major strain(𝛥𝜀) and ductile 

fracture value I (Table 4.5 and 4.6) revealed that the tool down-step (H), which reached 59.83% 

(Table 4.5) (60.72% (Table 4.6)), made the major contribution to the overall performance. 

Meanwhile, the contribution percentages for the tool radius (R) and friction coefficient () 

were lower at 33.78% (Table 4.5) (37.92% (Table 4.6)) and 6.39% (Table 4.5) (1.69% (Table 

4.6)), respectively. The contribution percentage of the friction coefficient () was the smallest. 

Thus, it was concluded that the tool down-step (H) factor had the most significant effect on 

the press formability in the area of concern, while the effect of the friction coefficient () was 

negligible. 

Table 4.6: ANOM and ANOVA Table of effect on ductile fracture value (I). 

Factor Average   by Level Sum of 

Squares 

D.O.F Sum of 

mean 

squares 

Contribution 

1 2 3 

A(R) -1.298 -0.695 -0.078* 2.231 2 1.1155 0.3792 

B(H) -1.444 -0.726 0.098* 3.573 2 1.7865 0.6072 

C(t) -0.762 -0.752 -0.557* 0.080 2 0.0400 0.0136 

Total    5.884 6 2.942  

* Indicates optimum level 

** Indicates sum of squares added to estimate pooled error sum of squares in parentheses 

 

The η (dB) of the levels for each factor were individually calculated, as shown in Table 4.4. In 

the Taguchi method, the higher the η value, the better the overall performance, meaning that 

the factor levels with the highest η value should always be selected. Accordingly, the average 

for each experimental level was calculated using the highest η value for each factor to produce 

the response Table (Tables 4.5 and 4.6). As shown in the response Table, the optimum 

conditions to maintain the difference in the major strain(𝛥𝜀) and the ductile fracture value I 

successfully in the forming test were A3B3C3, which means R = 4 mm, H = 0.7 mm, and  = 

0.10 mm.  
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Figure 4.12 depicts the evolution of (FE) simulation results for the optimum conditions (A3B3-

C3) in incremental sheet forming process. Figure 4.13 shows the experimental result for 

optimum case, where no failure appeared in the concerned area. 

 
(i) 

 

(ii) 
Figure 4.12: The evolution of deformed shape in FEM for optimum case of A3B3C3 (i) and 

simulation result of I value (ii). 
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Figure 4.13: Experimental result for optimum case of A3B3C3D1 (R=4mm, H=0.7mm, and 

===) 

Figure 4.14 presents the comparisons between cross-section views of evolutional stages of 

(FE) simulation and design section corresponding to side view in Figure 4.12 at each stage of 

tool stroke h = 8.5 mm, 17 mm, and 22 mm, respectively.  Four different typologies of error 

can be detected on (FE) simulation results. First of all, a “pillow” effect can be highlighted at 

intermediate stages, determining a concave curvature of the under-formed material. Secondly, 

uncorrect tool paths generated at high slopes of sidewall, giving the big gap between final and 

design shape. Thirdly, due to a tool radius is larger than radii of curvature of design shape, 

although such inaccuracy is normally solved through using a smaller tool. Finally when the 

punch action is relaxed, the blank “lifts up” and the final depth of the part is lower than the 

design value. 
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Figure 4.14: Comparisons between section view of evolutional stages of FEM simulation and 

design section at tool stroke of h = 8.5mm, h = 17mm, and h = 22mm. 

To investigate and compare the accuracy of final shape between simulation and experiment, 

the cross-section AA in Figure 4.13 was measured to find out how much spring-back actually 

differed, see Figure 4.15. This figure shows that the difference of spring-back was larger at the 

surface profiles cd and fg due to the slopes of sidewall are larger than others surface profiles. 

The shape distribution of the surface profiles ab, bc, de, and ef has quite good agreement 

between the experimental and (FE) results.  

 

Figure 4.15: Comparison of shape distribution between FE simulation and experiment results. 
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From the above discussion, it was concluded that the use of Taguchi’s experimental array for 

(FE) simulations allowed successful improvement of the process variables to improve the 

formability for incremental sheet forming process. As a result, the process variables were 

improved using a tool radius (R) of 4 mm, tool down step (H) of 0.7 mm, and friction 

coefficient () of 0.1 mm. 

 Conclusion 

To simulate the incremental sheet forming process of complex geometry shape e.g human 

face, values of (CL) data, which was generated from (CAM) simulation, has been automatically 

added and assigned to the (CAE) input file through MATLAB’s subroutine programming. 

To verify and improve process variables of incremental sheet forming process by using the 

finite element simulations, the tool radius, tool down step, and friction coefficient process 

variables was selected as main process variables and then investigated by the experiments. 

Commercial software (ABAQUS version 6.5, explicit formulation) was used for the simulation 

according to the orthogonal array of Taguchi’s method. As a result of the (FE) simulations 

based on the Taguchi orthogonal array, the tool down step (H) was identified as the important 

factors for improving the formability of the incremental sheet forming process. An improved 

parameter, consisting of a tool radius (R) of 4 mm, a tool down step (H) of 0.7 mm, and 

friction coefficient () of 0.1 mm, were chosen to give the best results for proposed geometry, 

using incremental forming. 
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Chapter 5: Case Study for Magnesium Alloy Sheets to Predict 

Ductile Fracture of Rotational Incremental Forming  

 

 Introduction 

As the lightest structural alloys, magnesium alloys have many advantages compared with steel, 

cast iron and even aluminum alloys [85]. However, the structural use of magnesium alloys is 

seriously restricted by their limited ductility at room temperature (RT) due to their hexagonal 

close-packed (HCP) crystal structure [86, 87]. 

At present, the magnesium alloys used for automobile parts are mainly processed by die casting 

[88, 89] that allows parts with complex geometry to be manufactured. Yet, the mechanical 

properties of such die cast parts invariably lack the required endurance strength and ductility 

[90]. As an alternative, the required mechanical properties for magnesium alloys can be 

achieved using a forming process instead of a die casting process. Parts manufactured by 

forming can have a fine-grained structure without porosity and improved mechanical 

properties, such as endurance strength and ductility [91]. Thus, research on mass produced 

magnesium alloy sheets has increased. 

To widen the application of the alloys, researches on sheet forming of magnesium alloys at 

elevated temperatures has been made in several papers [90, 92, 93, 94]. Won et al. [95] 

investigated the mechanical properties of magnesium alloys at elevated temperatures and 

discovered that the Lankford value(R) for an AZ31 magnesium sheet decreases as the 

temperature increases. It was revealed that an AZ31 magnesium sheet becomes isotropic and 

re-crystallizes above 200°C. Won et al. [95] and Choo et al. [96] studied the formability of 

magnesium alloy sheets at high temperatures and concluded that a temperature over 200°C 

was required to achieve the safe forming of magnesium alloy sheets. Park et al. [97] studied 

and showed the possibility of cup incremental forming of magnesium sheet at room 

temperature with rotational, where the tool rotates itself. Their study show that even though 

the incremental sheet forming has been found to improve the forming limit for aluminum and 

steel sheets compared with press forming [59, 77], there has been little investigation of 

incremental sheet forming for magnesium because it is difficult to form at room temperature. 

Therefore, they proposed rotational incremental sheet forming (RISF), which was proven to 

improve the formability of sheet materials compared with incremental sheet forming due to 

large amount of heat were generated in the contact area due to friction energy at the tool-

specimen interface and plastic deformation energy by the shear deformation. 

https://doi.org/10.21467/books.75
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In this study, the rotational incremental forming of magnesium alloy sheet for various wall 

angle of square shape are simulated using ABAQUS/Explicit finite element code. As the 

ductile failure criterion, the Oyane’s fracture criterion via VUMAT user material based on a 

combined kinematic/isotropic hardening law and Johnson-Cook model is used to predict 

fracture at elevated temperatures which was generated by rotational tool and friction energy 

at the tool-specimen interface. Firstly, a combined kinematic/isotropic hardening law is 

applied for uni-axial tension-compression test at room temperature to determine the scalar 

parameter  which make the best fit of stress-strain curves between (FE) simulation and 

experiment results of magnesium alloy sheet. Johnson-Cook model is then utilized to predict 

the stress-strain curves at elevated temperatures and compared with measured values. Finally, 

based on the relationship between heat generation at the tool-specimen interface and various 

wall angles, the Oyane’s fracture criterion is used to predict fracture for rotational incremental 

forming of magnesium alloy sheets. The effect of process parameters on ductile fracture value 

and forming limit curve at fracture were also investigated. 

 Finite element procedures 

In FEM simulation, due to asymmetric yield surface, the uniaxial-stress-plastic-strain response 

of the material for the uni-axial compression test is assumed as Equation (5.1):  

𝜎̄𝐶 =
𝜎𝑌

𝐶

𝜎𝑌
𝑇 𝐾(𝜀0 + 𝜀𝑒𝑞

𝑝𝑙
)𝑛       (5.1)  

Where K is the plastic coefficient,𝜎𝑌
𝑇 ,𝜎𝑌

𝐶  are tension and compression yield stress, n is the 

work-hardening exponent, and 𝜎̄𝐶 , 𝜀𝑒̄𝑞
𝑝𝑙

, 𝜀0are the equivalent stress in compression zone, 

equivalent strain, and yield strain, respectively, which were mentioned in Table 5.1. 

Table 5.1: Maximum temperature of the tool and specimen for each square cup (Ref. [97]) 

Wall angle, 𝜃 (°) Temperature of tool, (°C) Temperature of specimen, (°C) 

45 105 100 

60 125 118 

70 150 141 

 

Figure 5.1 shows the stress-strain curves obtained from the in-plane uni-axial compression 

and tension tests at room temperature. Figure 5.2 shows experimental results for the yield loci, 

which were not symmetric, and the compressive behavior differed from the tensile behavior. 

These phenomena were unique behavior of magnesium alloy sheet because of its crystal 

structure.  
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Figure 5.1: Stress-strain curves obtained from in-plane uniaxial compression tests at room 

temperature (Ref. [97]) 

 

Figure 5.2: Yield loci obtained from biaxial tensile tests and in-plane uniaxial compression tests 

(Ref. [97]) 

In this chapter, due to low average R-value (Lankford value) at elevated temperature (R~1 at 

2000C), the Von-Mises model was assumably applied in calculation.  
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5.2.1 Johnson–Cook model at elevated temperatures 

The inelastic behavior of the investigated alloy is assumed to be described by Johnson–Cook 

model [98]. This material model is suited to describe the mechanical behavior of material at 

high strain rates and various temperatures. It is generally used in adiabatic transient dynamic 

analysis. The hardening is a particular type of isotropic hardening in which the yield stress 𝜎̄ 

is assumed to be of the form: 

𝜎̄ = (𝐴 + 𝐵(𝜀𝑒𝑞
𝑝𝑙

)𝑛) (1 + 𝐶 𝑙𝑜𝑔 (
𝜀̇𝑒𝑞

𝑝𝑙

𝜀̇0
)) (1 − 𝑇̑𝑚)   () 

where  

𝑇̑ = {

0 𝑓𝑜𝑟 𝑇 < 𝑇𝑟
𝑇−𝑇𝑟

𝑇𝑚−𝑇𝑟
𝑓𝑜𝑟 𝑇𝑟 ≤ 𝑇 ≤ 𝑇𝑚

1 𝑓𝑜𝑟 𝑇 > 𝑇𝑚

      (5.3) 

A, B, C, n and m are material parameters, to be identified. T is the current temperature, Tm is 

the melting temperature and Tr is a reference temperature of 24 o C. 

In this study, we verify the unusual plastic behavior for magnesium sheet at elevated 

temperatures with constant strain rate (𝜀0̇ = 𝜀𝑒̇𝑞
𝑝𝑙

). Besides, the stress-strain curve has been 

fitted as in Equation 3.1. So that Equation (5.2) can be expressed as following reduced form  

𝜎̄ = 𝐾(𝜀0 + 𝜀𝑒𝑞
𝑝𝑙

)𝑛 (1 − (
𝑇−𝑇𝑟

𝑇𝑚−𝑇𝑟
)

𝑚

)     () 

To determine m quasi static experimental results at both room and higher temperatures are 

needed. If quasi static experiments, at the same strain rate, are carried out at two different 

temperatures denoted by the superscripts (5.2) and (5.3), the ratio r between the stresses at a 

specific plastic strain can be expressed as: 

𝑟 =
𝜎̄(1)(𝜀𝑒𝑞

𝑝𝑙
)

𝜎̄(2)(𝜀𝑒𝑞
𝑝𝑙

)
=

1−(𝑇̂(1))𝑚

1−(𝑇̂(2))𝑚
       (5.5) 

If 𝑇(2) = 𝑇𝑟then from Equation (5.2) 𝑇̑(2) = 0and m is given by  

𝑚 =
𝑙𝑜𝑔(1−𝑅)

𝑙𝑜𝑔(𝑇̑(1))
         (5.6) 
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The stresses shown in 

Figure 5.3 for temperatures 

100 ° C, 150 ° C and 200 ° C 

are divided by the stresses at 

24 ° C (room temperature) 

according to Equation (5.5). 

The result is as well as the 

average values in the range 

0.05 < pl < 0.25. The 

averaged values are r = 

0.879, r = 0.712 and r = 

0.444 for 100 ° C, 150 ° C 

and 200 ° C respectively. 

Substituting these values 

into Equation (5.6) results in 

m = 1.027 for 100 ° C, m = 

0.802 for 150 ° C, and m = 

0.48 for 200 ° C.  

 

Figure 5.3 The stress-strain curves with measured values [97] 

By adopting Johnson–Cook 

model thought using 

Equation (5.7) instead of 

Equation (3.1) in VUMAT 

subroutine for tensile test 

simulation at 100 ° C, 150 ° C 

and 200 ° C we can obtain the 

FE simulation results in 

Figure 5.4 

 

 

 

 

 

 

Figure 5.4: The stress-strain curves calculated using FE 

simulation and compared with the measured values 
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5.2.2 Problem description, geometry and FE models for rotational incremental 

forming of magnesium alloy sheet 

In this study, we applied above model for square shape rotational incremental forming of 

magnesium alloy sheet. Here, the specimens were 150 mm (width) by 150 mm (length) by 1 

mm (thickness). Meanwhile, the experimental model of the square shape was 80 mm (width) 

by 80 mm (length) by 25 mm (height). The depth increment was 0.4 mm in the z-direction, 

and the wall angles of the square cup shape were determined as 45 °, 60 °, and 70 °, 

respectively. The tool radius was 6mm and the feed rate was 400mm/min. As following 

previous study [97], in experiment the spindle speed of the tool was 4000 rpm on count clock 

wise for –z-direction until the temperature of the tool was 100 ° C in case of 45 ° wall angle 

and then set to 3000 rpm. Due to the temperature of the tool exceeded 100°C, chips of 

magnesium were generated in the contact area between the specimen and the tool. Therefore, 

100 ° C is maximum temperature in case of 45 ° wall angle without chip generating. As same 

way, for the other case, maximum temperature was measured while Table 5.2 shows the 

maximum temperature of the tool and specimen for each square cup. 

Table 5.2: Thermo-physical properties of magnesium alloy AZ31 

as function of temperature T (in o C) [99] 

Thermo-physical property AZ31 

Thermal conductivity (W/(m K)) 77 + 0.096 T 

Specific heat capacity (J/(kg K)) 1000 + 0.666T 

Thermal coefficient expansion (K-1) 2.48e-05 

As previous experiments [97], no 

fractures were observed with the 45 ° 

wall angle but fractures were observed 

with the 70° wall angle (Figure 5.5). The 

minor and major strains of a, b, c, d, and 

e in Figure 5.5 (c) were measured and 

represented as shown in Figure 5.6. 

Here, the open symbol of (△, □, ○) 

represents the strain with 45 °, 60 °, 70 ° 

wall angles and no fractures. Otherwise, 

the cross symbol (×) represents the 

occurrence of a fracture in wall and 

corner areas with a 70 ° wall angle. 

Figure 5.5: The square cups formed by rotational incremental 

sheet forming of (a) 45° wall angle, (b) 60° wall angle, and (c) 

70° wall angle at which the crack was occurred (Ref. [19]). 
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Figure 5.6: Forming limit for rotational incremental forming 

As mention from the previous literature [59, 77], most forming limit curves in incremental 

sheet forming (FLC at fracture: FLCF) appears to be a straight line with a negative slope in 

the positive region of the minor strain. By adopting this linear model (Figure 5.6) to formulate 

a forming limit curve (FLCF), it can be expressed as follow: 

𝜀1 + 0.639𝜀2 = 1.02       (5.7) 

Figure 5.7 shows the finite-element model for the incremental sheet forming test process.   To 

simulate the experiments, only one quarter of specimen is modeled, the blank modeled using 

solid elements C3D8R, the punch modeled using analytical rigid surface-elements, and the die 

modeled using rigid surface-elements R3D4. Throughout this study, the average element size 

of the blank was about 1 mm in width, 1mm in length, and 0.33 in thickness; the average 

element size of the rigid die was about 2 mm in width, and 2 mm in length. Here, the die was 

fixed in all directions. The tool was allowed 

to move following the tool-path and rotate 

involving z direction at the centre point of 

the tool. The friction behavior was 

modeled using the Coulomb friction law. 

The friction coefficient 1 between the 

blank and the punch is assumed to be the 

same the fiction coefficient 2 between the 

blank and the die of 0.1. The other physical 

properties of the materials used in the 

analysis are shown in Table 5.2. 

Figure 5.7: Finite element model for incremental forming simulation 
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5.2.3 Ductile fracture criterion 

To determine the material constants C1, C2 in Equation (3.3), destructive tests have to be 

operated under at least two types of stress conditions. Here, we utilized forming limit curve at 

fracture Equation (5.7) to calculate the fracture strain for uni-axial tension and a plane strain 

state as 1.499 and 1.178, respectively. From this result, the material constants C1, and C2 for 

the ductile fracture criterion were calculated as 2.059, and 3.586, respectively. 

Oyane’s the ductile criterion in Equation (5.8) is combined with proposed hardening model 

and Johnson-Cook model, and then coded into a VUMAT subroutine. 

 Results and discussion 

Figure 5.8 (a) shows the FE simulation results of heat generation (SDV44) in the contact area 

between the specimen and the tool for three different positions of tool, Figure 5.8 (b) depicts 

the evolutions of temperature at the elements corresponding to three tool positions of Figure 

5.8 (a) for the case of 70 o wall angle.  

 

Figure 5.8: Heat generation in the contact areas between the specimen and the tool 
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The results show that the maximum temperatures in FE simulation of 147 o C at corner and 

about 122 o C at wall areas are good agreement with that in experimental measurement of 141 

o C given in Table 5.1. In order to verify the effect of heat generation on the stress-strain curve 

without considering Johnson-Cook model, equivalent stress-strain evolution in incremental 

forming, obtained by (FE) simulation via VUMAT user material, were compared with other 

stress-strain curves at elevated temperatures obtained by adopting Johnson–Cook model for 

tensile test simulation in Figure 5.4 and shown in Figure 5.9 (a).  

 

Figure 5.9: Evolution of equivalent stress-strain curve in incremental forming in case of (a) 

without considering Johnson-Cook model and (b) considering Johnson-Cook model 

Even though the (FE) simulation predicts well heat generation, the boundary profile of 

equivalent stress-strain evolution in incremental forming without considering Johnson-Cook 

model was still following stress-strain curve at room temperature. So that, in this study, heat 

generation at elements in the contact area between the specimen and the tool was calculated 

considering Johnson-Cook model using Equation (5.4) and coded into VUMAT subroutine 

for incremental forming simulation. The equivalent stress-strain evolution in this case was 

shown in Figure 5.9(b). The boundary profile of equivalent stress-strain evolution, which was 

limited by stress-strain curves at room temperature and 150 ° C in tensile test simulation, 

proved the effect of heat generation on stress-strain curve and was suitable with experiments 

of tensile test at elevated temperatures. This method should be applied to predict ductile 

fracture in (FE) simulation of rotational incremental forming of magnesium alloy. 

The (FE) simulation results for three cases test sample with the equivalent plastic strain 𝜀̄ 

(SDV7), and the maximum ductile fracture value I (SDV9) calculated from Equation (25) via 

VUMAT user material based on a combined kinematic/isotropic hardening law are presented 

in Figure 5.10. The simulation results show that the maximum value of the fracture ductile 

integral I of the (80 mm × 80 mm × 25 mm) square shape with 40o, and 60o wall angles 
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corresponding 105 o C, and 126 o C of maximum temperature are 0.513 and 0.898, respectively, 

which is smaller than 1.00. This means that failure do not occur in this case of process. 

Otherwise, in case of the (80 mm × 80 mm × 20 mm) square shape with 70 o wall angle 

corresponding 147 o C of maximum temperature, the (FE) simulation results give the 

maximum value of ductile fracture integral I equal to 1.242, and failure appeared. The trends 

of the failure site predicted in his study were in quite good agreement with those in the actual 

experiments.  

 

Figure 5.10: Deformed shape in finite element simulation in case of (a) 45o wall angle, (b) 60o 

wall angle, and (c) 70o wall angle 
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After the simulation, it can be concluded that in order to obtain a sound final product, the wall 

angle of the square shape should be smaller than 70 o. Even though the heat generation is 

smaller than the case of 70 o wall angle, 45 o and 60 o wall angles can be deformed to the final 

shape without any failure. 

In order to predict forming limit curve at fracture utilized (FE) simulation results, we proposed 

the method as shown in Figure 5.11. Figure 5.11 (a) shows the evolutional strain paths at the 

element of corner area (point A in Fig 5.10 (c)) and the element of wall area (point B in Figure 

5.10 (c)). These strain paths is suitable to the paths of equal biaxial stretching and plane strain. 

Figure 5.11 (b) presents the evolutions of the ductile fracture integral I at the elements of 

concerned points (A and B) versus major strain. From Figure 5.11 (b), the major strains at 

occurred fracture (I = 1) of concerned points of equal biaxial stretching and plane strain are 

determined as 0.665 and 1.017, respectively. Figure 5.11 (c) depicts the forming limit curve at 

fracture (FLCF) obtained by adopting a linear model through occurred fracture points from 

(FE) simulations. This (FLCF) is quite good agreement with the previous assumption of 

Equation (5.7) and Figure 5.6. 

 

Figure 5.11: FLCF obtainment from FE simulation at the corner and wall area for the case of 700 

wall angle. 
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5.3.1 Effect of tool down-step  

To verify the effect of tool down-step (H), analysis is carried out for the tool down-step (H) 

of 0.8 mm, and 1.2 mm and then results are compared with that of H = 0.4 mm discussed 

earlier for the case of the (80 mm × 80 mm × 20 mm) square shape with 70o wall angle 

corresponded 140 o C of temperature and the tool radius (R) of 6 mm. As shown in Figure 

5.12, the maximum values of ductile fracture integral I in these cases are predicted to be 1.271 

and 1.324, respectively. Thus, at higher tool down-step, the maximum values of ductile fracture 

integral I will be larger. This happens, because deformation becomes larger with increase in 

tool down-step.  

 

Figure 5.12: Deformed shape in FE simulation in case of 70o wall angle, tool radius of 6 mm, and 

(a) tool down-step of 0.8 mm; (b) tool down-step of 1.2 mm 

Figure 5.13 presents the (FLCF) 

obtained by adopting a linear model 

through occurred fracture points (I = 

1) of equal biaxial stretching and plane 

strain for all three cases. When the 

down-step increased from 0.4 mm to 

0.8 mm, and 1.2 mm, the fracture 

major strains of equal biaxial stretching 

and plane strain decreased to 0.613, 

0.544 and 0.94, 0.85, respectively, so 

that the (FLCF) moved down. Thus, it 

is clear that the formability becomes 

lower as the down-step becomes 

higher. These results were similar to 

the experimental results and 

conclusions of previous study [77]. 

Figure 5.13: FLCF with different tool down-step and 6 mm tool radius 
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5.3.2 Effect of tool radius 

The effect of tool radius (R) is investigated by carrying out the analysis for the following two 

cases of R = 4 mm, and 8 mm. The analysis is carried out for the case of the (80 mm × 80 

mm × 20 mm) square shape with 70 o wall angle and the tool down-step (H) of 0.4 mm. The 

maximum values of ductile fracture integral I was found to be 1.229, and 1.258, respectively 

as shown in Figure 5.14. Figure 5.15 depicts the (FLCF) when the tool radius changes from 6 

mm to 4 mm and 8 mm. The (FLCF) is lower in case of 8mm tool radius with the fracture 

major strains of equal biaxial stretching and plane strain is 0.614, and 0.927, respectively. In 

the case of 4 mm tool radius, the fracture major strain increased to 0.717 at equal biaxial 

stretching and decreased to 0.597 at plane strain area. As the tool radius increases, the 

deformation zone or the contact zone increases, and the level of strain decreases resulted 

incremental formability. 

 

Figure 5.14: Deformed shape in FE simulation in case of 70 o wall angle, tool down-step of 0.8 

mm, and (a) tool radius of 4 mm; (b) tool radius of 8 mm 

 

Figure 5.15: FLCF with different tool radius and 0.4 mm tool down-step 
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 Conclusion 

In this study, to predict a fracture of rotational incremental forming for magnesium alloy sheet, 

the heat generation at elements due to rotational tool and contact area between the specimen 

and the tool was implemented using finite element simulations through Johnson-Cook model 

and then compared with experiments of the square shape with 45 o, 60 o, and 70 o wall angles. 

Commercial software (ABAQUS version 6.5, explicit formulation) with a user-defined 

subroutine (VUMAT) based on a combined kinematic/isotropic hardening model was used 

for the simulation. The (FE) simulation results show that if the wall angles of 80 mm × 80 

mm × 25mm square shape are smaller than 60 o then the maximum value of the fracture 

ductile integral I will be less than 1 value, and fracture will not occur. The predictions of failure 

site were in good agreement with those in actual experiments. The (FLCF) prediction and 

effect of process parameters on (FLCF) utilized (FE) simulation results show that the 

formability decreases as the tool down-step or tool radius increase. This prediction is suitable 

to previous conclusion [77] of incremental sheet forming process. 
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