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Introduction: 

The Gompertz distribution plays an important role in modeling survival times, human 

mortality and actuarial tables. Gompertz probability distribution has many useful applications 

in areas of technology, medical, biological, and natural sciences. The Gompertz distribution 

was introduced by Gompertz (1825), and many authors have contributed to the statistical 

methodology and characterization of this distribution. Ismail (2010) discussed Bayes 

estimation for unknown parameters of Gompertz distribution and acceleration factors under 

partially accelerated life tests with Type-I censoring. Based on progressive first-failure 

censoring plans. Soliman et al. (2012) studied Bayes and frequentist estimators for two-

parameter Gompertz distribution. Feroze and Aslam (2013) obtained point and interval 

estimates for the parameters of the two-component mixture of the Gompertz model based on 

Bayes Method along with posterior predictions for the future value from model. Sarabia et al. 

(2014) exploded several properties of the Gompertz distribution when lifetime or other kinds 

of data available fully observed. Prakash (2016) discussed about the Bayes prediction bound 

length under different censoring plans and statistical inference based on a random scheme 

under progressive Type-II censored data for Gompertz model. Reyad et al. (2016) introduced 

a comparative study for the E-Bayesian criteria with three various Bayesian approaches; 

Bayesian, hierarchical Bayesian and empirical Bayesian. 

The probability density function of Gompertz distribution is given by 

 0;0;)( )1( = −−   xeexf
xex                                                                                   (10.1) 
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The likelihood function for (10.1) is given by 
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Figure 10.1: represents probability density function of Gompertz distribution under different 

values of parameters. 

The Bayesian analysis is theoretically simple and probabilistically elegant. When posterior 

distribution is expressible in terms of complex analytical function and requires thorough 

calculation because of its numerical implementations, an approximate and large sample 

behavior of posterior distribution is studied. This is significant for two reasons: (a) asymptotic 

results provide valuable first order approximations when actual samples are relatively large, 

and (b) objective Bayesian methods obviously depend on the asymptotic properties of the 

assumed model. Thus, our current reading focuses to obtain the estimates of shape parameter 

of Gompertz distribution using two Bayesian approximation techniques i.e. normal 

approximation, T-K approximation. 

Bayes Estimate of Shape Parameter of Gompertz Distribution using Normal 

Approximation: 
 

If the posterior distribution ( )x|  is unimodal and roughly symmetric, it is convenient to 

approximate it by a normal distribution centered at the mode, yielding the approximation 

( ) ( )  






 −1ˆ,ˆˆ~|  INx  
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where   ( ) ( )
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If the mode, 
̂  is in the interior parameter space, then ( )I  is positive; if ̂  is a vector 

parameter, then  ( )I   is a matrix. Some good sources on the topic is provided by Sultan et 

al. (2015). 

In our study the normal approximations of Gompertz distribution under different priors is 

obtained as under: 
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from which the posterior mode is obtained as 
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Thus, the posterior distribution can be approximated as 
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Under the Inverse Levy prior 0;0;)( 22/1 
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Thus, the posterior distribution can be approximated as 
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 where a, b are the known hyper 

parameters, the posterior distribution for  is approximated as 





























+−

−+

+−

−+


=

=

2

1
1 )1(

1
;

)1(

1
~)|(

be

an

be

an
Nx

i
i xn

i

xn

i

                                             

Bayes Estimate of Shape Parameter of Gompertz Distribution using T-K (Laplace) 

Approximation: 

Tierney and Kadane (1986) gave Laplace method to evaluate )|)(( xhE  as 
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From which 

)1(

1ˆ

1

*

−

+−
=

 =

ixn

i
e

mn
  that maximizes )( ** hn  since 

0
1

)(
2

** 
+−

−=





mn
hn  

Thus the maximum of )(hn and )( ** hn are given by 

)(

)1(

ln)ˆ(

1

mn

e

mn
hn

mn

xn

i

i

−−



















−

−
=

−

=
  &  

)1(

)1(

1
ln)ˆ(

1

1

** +−−



















−

+−
=

+−

=
mn

e

mn
hn

mn

xn

i

i

  

respectively. 

The estimates of variances are given by 
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where the relative error exact to the posterior mean 
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where the relative error exact to the posterior mean 
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Real life example 10.1 

To examine the applicability of the results, real life data sets are analyzed. The data represents 

the survival times of 121 patients with breast cancer obtained from a large hospital which is 

widely reported in some literatures like Ramos et al. (2013)). 

0.3,0.3,4.0,5.0,5.6,6.2,6.3,6.6,6.8,7.4,7.5,8.4,8.4,10.3,11.0,11.8,12.2,12.3,13.5,14.4,14.4,14.8,15.5,

15.7,16.2,16.3,16.5,16.8,17.2,17.3,17.5,17.9,19.8,20.4,20.9,21.0,21.0,21.1,23.0,23.4,23.6,24.0,24.

0,27.9,28.2,29.1,30.0,31.0,31.0,32.0,35.0,35.0,37.0,37.0,37.0,38.0,38.0,38.0,39.0,39.0,40.0,40.0,4

0.0,41.0,41.0,41.0,42.0,43.0,43.0,43.0,44.0,45.0,45.0,46.0,46.0,47.0,48.0,49.0,51.0,51.0,51.0,52.0,

54.0,55.0,56.0,57.0,58.0,59.0,60.0,60.0,60.0,61.0,62.0,65.0,65.0,67.0,67.0,68.0,69.0,78.0,80.0,83.

0,88.0,89.0,90.0,93.0,96.0,103.0,105.0,109.0,109.0,111.0,115.0,117.0,125.0,126.0,127.0,129.0,12

9.0,139.0,154.0. 
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Real life example 10.2 

Consider the data of survival times of 45 gastric cancer patients given chemotherapy and 

radiation treatment (Bekker et al. 2000).  

0.047, 0.115, 0.121, 0.132, 0.164, 0.197, 0.203, 0.260, 0.282, 0.296, 0.334, 0.395, 0.458, 0.466, 

0.501, 0.507, 0.529, 0.534, 0.540, 0.570, 0.641, 0.644, 0.696, 0.841, 0.863, 1.099, 1.219, 1.271, 

1.326, 1.447, 1.485, 1.553, 1.581, 1.586, 2.178, 2.343, 2.416, 2.444, 2.825, 2.830, 3.578, 3.658, 

3.743, 3.978, 4.033 

The Bayes estimates and posterior standard error (given in parenthesis) for both the examples 

under normal and T-K (Laplace) approximation based on non- informative and informative 

priors have been presented in table 10.1, 10.2 

Table 10.1: Posterior estimates and posterior standard error (in parenthesis) under normal and 

T-K (Laplace) approximations 

 Jeffrey’s prior Gamma prior Inverse levy prior 

m=0.5 m=1 m=1.5 a=b=1 a=b=2 a=b=3 c=1 c=2 c=3 

NA̂  
0.0925 

(0.0172) 

0.0909 

(0.0171) 

0.0893 

(0.0167) 

0.0937 

(0.0171) 

0.0966 

(0.0173) 

0.0994 

(0.0175) 

0.09221 

(0.0170) 

0.0919 

(0.0167) 

0.0916 

(0.0166) 

LA̂  
0.0956 

(0.0173) 

0.0941 

(0.0172) 

0.0925 

(0.0170) 

0.0969 

(0.0185) 

0.0997 

(0.0182) 

0.1025 

(0.0180) 

0.0954 

(0.0171) 

0.0953 

(0.0169) 

0.0951 

(0.0168) 

 

Table 10.2: Posterior estimates and posterior standard error (in parenthesis) under normal and 

T-K (Laplace) approximations: 

 Jeffrey’s prior Gamma prior Inverse levy prior 

m=0.5 m=1 m=1.5 a=b=1 a=b=2 a=b=3 c=1 c=2 c=3 

NA̂  0.1336 

(0.0309) 

0.1321 

(0.0299) 

0.1306 

(0.0198) 

0.1347 

(0.02008) 

0.1372 

(0.0202) 

0.1398 

(0.0204) 

0.1332 

(0.0200) 

0.1328 

(0.0199) 

0.1324 

(0.0188) 

LA̂  
0.1366 

(0.02025) 

0.1351 

(0.02014) 

0.1336 

(0.02002) 

0.1377 

(0.02031) 

0.1402 

(0.02046) 

0.1428 

(0.02061) 

0.1364 

(0.02022) 

0.1362 

(0.02019) 

0.1360 

(0.02016) 
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Simulation study 

In our simulation study we have generated a sample of sizes n=20, 50, 75 to see the result of 

small, medium, and large samples on the estimators. The results are simulated 5000 times and 

the average of the results has been presented in the tables 10.3, 10.4. To inspect the 

performance of Bayesian estimates for shape parameter of Gompertz distribution under 

different approximation techniques, estimates are obtainable along with posterior standard 

error given in parenthesis in the below tables. 

Table10.3: Posterior estimates and posterior standard deviation (in parenthesis) under normal 

approximation
 

n   

Jeffrey’s prior Gamma prior Inverse levy prior 

m=0.5 m=1.0 m=1.5 a=b=1 a=b=2 a=b=3 c=1 c=2 c=3 

20 

0.9 
0.9271  

(0.2099) 

0.9032  

(0.2072) 

0.8795  

(0.2044) 

0.9076  

(0.2029) 

0.9116  

(0.1989) 

0.9153  

(0.1951) 

0.8849  

(0.2004) 

0.8465  

(0.1917) 

0.8113  

(0.1837) 

1.5 
1.3021  

(0.2948) 

1.2687 

(0.2910) 

1.2353  

(0.2872) 

1.2518  

(0.2799) 

1.2370  

(0.2699) 

1.2238  

(0.2609) 

1.2205  

(0.2764) 

1.1486  

(0.2601) 

1.0847  

(0.2456) 

2.5 
1.8949  

(0.4291) 

1.8463  

(0.4235) 

1.7977  

(0.4179) 

1.7713  

(0.3961) 

1.7086  

(0.3728) 

1.6553  

(0.3529) 

1.7271  

(0.3911) 

1.5865  

(0.3592) 

1.4672  

(0.3322) 

50
 

0.9 
1.1378  

(0.1617) 

1.1263  

(0.1609) 

1.1148  

(0.1601) 

1.1234  

(0.1588) 

1.1207  

(0.1569) 

1.1181  

(0.1551) 

1.1122  

(0.1581) 

1.0878  

(0.1546) 

1.0644  

(0.1512) 

1.5 
1.1956  

(0.1699) 

1.1835  

(0.1690) 

1.1541  

(0.1682) 

1.1792  

(0.1667) 

1.1751  

(0.1645) 

1.1711  

(0.1624) 

1.1674  

(0.1659) 

1.1405  

(0.1621) 

1.1148  

(0.1584) 

2.5 
1.5784  

(0.2243) 

1.5625  

(0.2232) 

1.5466  

(0.2221) 

1.5451  

(0.2185) 

1.5288  

(0.2141) 

1.5134  

(0.2098) 

1.5297  

(0.2174) 

1.4838  

(0.2109) 

1.4406  

(0.2047) 

75
 

0.9 
0.8118  

(0.0941) 

0.8009  

(0.0934) 

0.8009  

(0.0934) 

0.8084  

(0.0933) 

0.8104  

(0.0929) 

0.8124  

(0.0925) 

0.8030  

(0.0930) 

0.7944  

(0.0920) 

0.7861  

(0.0911) 

1.5 
1.1887  

(0.1377) 

1.1807  

(0.1372) 

1.1727  

(0.1367) 

1.1779  

(0.1360) 

1.1751  

(0.1347) 

1.1724  

(0.1336) 

1.1701  

(0.1355) 

1.1519  

(0.1334) 

1.1344 

(0.1314) 

2.5 
1.5473 

(0.1792) 

1.5369  

(0.1786) 

1.5265  

(0.1781) 

1.5259  

(0.1762) 

1.5155  

(0.1738) 

1.5054  

(0.1715) 

1.5158  

(0.1756) 

1.4855  

(0.1721) 

1.4565  

(0.1687) 
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Table10.4: Posterior estimates and posterior standard error (in parenthesis) under T-K 

approximation 

n   

Jeffrey’s prior Gamma prior Inverse levy prior 

m=0.5 m=1 m=1.5 a=b=1 a=b=2 a=b=3 c=1 c=2 c=3 

20 

0.9 
0.9748 

(0.2152) 

0.9510 

(0.2126) 

0.9272 

(0.2099) 

0.9532 

(0.2079) 

0.9552 

(0.2036) 

0.9571 

(0.1995) 

0.9521 

(0.2102) 

0.9305 

(0.2054) 

0.9099 

(0.2009) 

1.5 
1.3691 

(0.3023) 

1.3357 

(0.2986) 

1.3024 

(0.2948) 

1.3147 

(0.2868) 

1.2961 

(0.2763) 

1.2797 

(0.2667) 

1.3249 

(0.2925) 

1.2834 

(0.2834) 

1.2445 

(0.2748) 

2.5 
1.9925 

(0.4399) 

1.9439 

(0.4345) 

1.8953 

(0.4291) 

1.8603 

(0.4058) 

1.7903  

(0.3816) 

1.7308 

(0.3608) 

1.9002 

(0.4195) 

1.8160 

(0.4010) 

1.7390 

(0.3840) 

50
 

0.9 
1.1608 

(0.1633) 

1.1493 

(0.1625) 

1.1378 

(0.1617) 

1.1427 

(0.1786) 

1.1427 

(0.1584) 

1.1397 

(0.1565) 

1.1476 

(0.1614) 

1.1347 

(0.1596) 

1.1221 

(0.1579) 

1.5 
1.2198 

(0.1716) 

1.2077 

(0.1707) 

1.1956 

(0.1699) 

1.2028 

(0.1684) 

1.1981 

(0.1661) 

1.1937 

(0.1639) 

1.2052 

(0.1696) 

1.1911 

(0.1676) 

1.1771 

(0.1656) 

2.5 
1.6104 

(0.2266) 

1.5944  

(0.2254) 

1.5785 

(0.2243) 

1.5761 

(0.2206) 

1.5588 

(0.2161) 

1.5425 

(0.2118) 

1.5851 

(0.2230) 

1.5606 

(0.2196) 

1.5369 

(0.2162) 

75
 

0.9 
0.8227 

(0.0946) 

0.8172 

(0.0943) 

0.8118 

(0.0941) 

0.8192 

(0.0939) 

0.8211 

(0.0935) 

0.8230 

(0.0931) 

0.8182 

(0.0941) 

0.8138 

(0.0936) 

0.8094 

(0.0931) 

1.5 
1.2046 

(0.1386) 

1.1967 

(0.1381) 

1.1887 

(0.1377) 

1.1936 

(0.1369) 

1.1906 

(0.1356) 

1.1877 

(0.1344) 

1.1951 

(0.1375) 

1.1857 

(0.1364) 

1.1765 

(0.1354) 

2.5 
1.5680 

(0.1804) 

1.5577 

(0.1798) 

1.5473 

(0.1792) 

1.5463 

(0.1773) 

1.5354 

(0.1749) 

1.5250 

(0.1726) 

1.5519 

(0.1786) 

1.5361 

(0.1767) 

1.5207 

(0.1750) 
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Conclusion 

We presented approximate to Bayesian integrals of Gompertz distribution depending upon 

numerical integration and simulation study and showed how to study posterior distribution by 

means of simulation study. From the findings of above tables (1, 2, 3, 4) it has been found that 

the large sample distribution could be improved when prior is taken into account. In all cases 

(simulated data as well as real life data) normal approximation, T-K approximation, Bayesian 

estimates under informative priors are better than those under non-informative priors 

especially the Inverse levy distribution proves to be efficient with minimum posterior standard 

deviation. Further we accomplish that the posterior standard deviation based on different 

priors tends to decrease with the increase in sample size. It indicates that the estimators 

attained are consistent. It can also be detected that the performance of Bayes estimates under 

informative priors (inverse levy) is better than non-informative prior. 
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