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Introduction 

The Randomized response (RR) technique was first presented by Warner (1965) mainly to cut 

down the probability of (i) reduced response rate and (ii) inflated response bias experienced in 

direct or open survey relating to sensitive issues. Some recent involvement to randomized 

response sampling is given by Fox and Tracy (1986), Singh and Mathur (2004, 2005), 

Gjestvang and Singh (2006), Singh and Tarray (2013, 2014, 2015, 2016) and Tarray and Singh 

(2016, 2017, 2018) . We below give the description of the model due to Singh (2010): 

Singh (2010) Additive Model 

Let  there be k scrambling variables denoted by Sj , j = 1,2,…,k whose mean θj  (i.e. E(Sj) =θj) 

and variance 2
j  (i.e. V(Sj) = 2

j ) are known. In Singh’s (2010) proposed optimal new 

orthogonal additive model named as (POONAM), each respondent selected in the sample is 

requested to rotate a spinner, as shown in Fig. 9.1,  in which the proportion of the k shaded 

areas, say P1, P2, … Pk are orthogonal to the means of the k scrambling variables, say 

k21 ,...,,  such that: 

    0P j
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1j
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Figure 9.1: Spinner for POONAM (Singh (2010)) 

Now if the pointer stops in the jth shaded area, then the ith respondent with real value of the 

sensitive variable, say Yi, is requested report the scrambled response Zi as: 

      jii SYZ +=                                                                                                              (9.3) 

Assuming that the sample of size n is drawn from the population using simple random 

sampling with replacement (SRSWR). Singh (2010) suggested an unbiased estimator of the 

population mean Y as   

   =
=

n

1j
jY Z

n

1
ˆ                                                                                                                (9.4) 

The variance of Y̂  is given by  
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The proposed procedure 

It is to be noted that the mean θj and variance 2
j  

of the jth scrambling variable Sj (j=1,2,…,k) 

are known. Author has to propose a new additive model based on standardized scrambling 

variable 
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As demonstrated in Fig. 9.2, in which the proportion of the k shaded areas, say P1, P2, … Pk 

are orthogonal to the means of the k scrambling variables ( ),k,...,2,1j,S j =
say 

k21 ,...,,  such that: 

    0P j

k

1j
j =

=

                                                                                                             (9.6) 

and 1P
k

1j
j =

=

                                                                                                                (9.7) 

Now if the pointer stops in the jth shaded area, then the ith respondent with real value of the 

sensitive variable, say Yi, is requested report the scrambled response 

iZ as: 

   
 += jii SYZ                                                                                                            

(9.8) 

we prove the following theorems. 

 

Figure 9.2: Spinner for proposed procedure. 
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Theorem 9.1  
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Proof 

Let E1 and E2 denote the expectations, then we have 
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which proves the theorem. 

Theorem 9.2  
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where  
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Efficiency Comparison 

From (9.5) and (9.4), we have 
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In case the scrambling variable Sj follows a normal distribution  

(i.e. Sj ~N(j , j
2) ,  k,...,2,1j = ) , then Aj reduces to: 
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Thus the condition (9.1) reduces to: 
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The condition (9.3) clearly indicates that
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proposed model is always better.  

Further , suppose Sj ~N(j , j
2) ,  k,...,2,1j =  ,  =0 and j  = 0 k,...,2,1j = , then the 

variance expression in (9.5) and (9.4) respectively reduce to: 
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and 
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From (9.4) and (9.5) we have 
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which is always positive if 

          ( ) 032
j −        k,...,2,1j =  

i.e. if  32
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Thus when Sj ~N(0 , j
2) ,  k,...,2,1j =  , ST̂

 
is more efficient  as long as the condition 

(9.7) is satisfied.  
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In case Sj follows a normal distribution (i.e. Sj ~N(j , j
2) ,  k,...,2,1j = ) , PRE  of ST̂

with Y̂ by using the formula: 
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where 

jA  is given in (9.2). 

Suppose γ=40, 1= 30,    2= 40, 3 = 20, 4= 10, P1=0.02, P2=0.05, P3=0.06, P4=0.87 with k 

= 4 . 4321
2
y and,,,   as listed in Table 9.1.  

Table 9.1: ( )YST
ˆ,ˆPRE   

2
Y  1  2  3  4  PRE  

25 

300 200 100 -25.20 18523.16 

800 700 600 -100.00 242264.29 

1300 1200 1100 -174.70 732808.85 

1800 1700 1600 -249.40 1490172.55 

125 

300 200 100 -25.20 4130.07 

800 700 600 -100.00 53073.44 

1300 1200 1100 -174.70 160380.06 

1800 1700 1600 -249.40 326053.37 

225 

300 200 100 -25.20 2362.49 

800 700 600 -100.00 29839.47 

1300 1200 1100 -174.70 90081.79 

1800 1700 1600 -249.40 183091.37 

325 

300 200 100 -25.20 1672.71 

800 700 600 -100.00 20772.56 
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1300 1200 1100 -174.70 62648.32 

1800 1700 1600 -249.40 127301.32 

425 

300 200 100 -25.20 1305.25 

800 700 600 -100.00 15942.52 

1300 1200 1100 -174.70 48034.22 

1800 1700 1600 -249.40 97581.38 

525 

300 200 100 -25.20 1076.99 

800 700 600 -100.00 12942.05 

1300 1200 1100 -174.70 38955.77 

1800 1700 1600 -249.40 79119.00 

625 

300 200 100 -25.20 921.41 

800 700 600 -100.00 10897.13 

1300 1200 1100 -174.70 32768.55 

1800 1700 1600 -249.40 66536.36 

725 

300 200 100 -25.20 808.58 

800 700 600 -100.00 9414.01 

1300 1200 1100 -174.70 28281.11 

1800 1700 1600 -249.40 57410.48 

825 

300 200 100 -25.20 723.01 

800 700 600 -100.00 8289.13 

1300 1200 1100 -174.70 24877.59 

1800 1700 1600 -249.40 50488.93 
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 From Table 9.1 ( )YST
ˆ,ˆPRE   are greater than 100. It shows ST̂ is more efficient 

than  
Y̂   with substantial gain. Thus, the estimator ST̂  over  

Y̂  is recommended. 

Table 9.2: PRE of  ST̂ ove Y̂ . 

2
y  

25 125 225 325 425 525 625 725 825 

PRE 835.71 260.94 190.35 162.80 148.13 139.02 132.80 128.30 124.88 

The minimum values from 9.2 is observed as 124.88 and maximum 835.71 with a median of 

148.13. 

Table 9.2 PRE remains higher if the value of 
2
y  is small. In that case the value of 

2
y  will be 

around 0.5 to 5.0 (see Singh (2010), p. 67). It is observed that the PRE value decreases from 

5985.71 to 2675.00 as the value of 
2
y  increases from 0.5 to 5.0 .  

Case k = 2 and the )ˆ,ˆ(PRE YST  for different parameters. Results are shown in Table 9.3. 

Thus, the estimator ST̂ over the estimator Y̂ is recommended.  

Table 9.3:   PRE of the estimator ST̂ over the estimator Y̂  with k =2. 

P1 1 2 
2
Y  PRE  

0.2 1300 -325.0 

25 1514232.14 

125 331316.41 

225 186046.05 

325 129355.18 

425 99155.37 

525 80394.89 

625 67609.08 

725 58335.85 

825 51302.54 

0.4 300 -200.0 

25 219089.29 

125 48003.91 

225 26993.42 

325 18794.21 

425 14426.40 
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Conclusion  

This paper elucidates amelioration over the Singh’s (2010) randomized response model. We 

have advocated the optimal orthogonal additive randomized response model. The proposed 

model is found to be more resourceful both theoretically as well as numerically than the 

additive randomized response model studied by Singh (2010).  Thus, the suggested RR 

procedure is therefore indorsed for its use in practice as an alternative to Singh’s (2010) model.  

 

Author’s Detail 

Tanveer A. Tarray 

525 11713.07 

625 9863.85 

725 8522.66 

825 7505.43 

0.4 800 -533.3 

25 1528536.91 

125 334445.57 

225 187802.78 

325 130576.32 

425 100091.20 

525 81153.47 

625 68246.87 

725 58886.03 

825 51786.27 

0.8 300 -1200.0 

25 1289517.86 

125 282160.16 

225 158449.56 

325 110172.26 

425 84454.44 

525 68478.22 

625 57589.97 

725 49692.99 

825 43703.50 
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