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Introduction 

Exponential-Rayleigh (ER) distribution is a newly proposed lifetime model introduced and 

discussed by Kawsar and Ahmad (2017). It is a versatile distribution and can take a variety of 

shapes such as positively skewed, reversed-J and tends to be symmetric. Exponential-Rayleigh 

distribution is a continuous distribution with wide range of applications in reliability fields and 

is used for modelling lifetime phenomena. The cdf and pdf of the ERD are given as 
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The main purpose of this chapter is to study the Bayesian approach for the parameter of ER 

distribution. There are numerous good sources which provide the detailed explanation of 

Bayesian approach while then, a number of authors have studied and obtained various 

probability distributions based on the Estimation of the Bayesian approach.  Ahmed et al. 

(2007) discussed the exponential distribution (ED) from a Bayesian point of view. James Dow 

(2015) obtained the Bayesian Inference for the parameter of Weibull-Pareto distribution. 

Naqash et al. (2016) studied Bayesian Analysis of Generalized Exponential Distribution while 

as Kawsar and Ahmad (2017) considered the estimation for the parameter of Weibull- Rayleigh 

(WR) distribution. They obtained Baye’s estimators for the parameter of WR distribution by 

using different Informative and Non-Informative priors under different symmetric and 

asymmetric loss functions. They also compared the classical method with Bayesian method by 

using mean square error through simulation study with varying sample sizes. 
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Parameter Estimation 

Consider a random sample nxxxx ,....,, 321  having density function of (6.1) and then the 

likelihood function of the given distribution is as follows: 
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The corresponding log likelihood function of the equation (6.3) is given as under: 
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Differentiating (6.4) with respect to , when the parameter  is assumed to be known, then 

the MLE is obtained as 

 












−

==




=

n

i

ix

e

n
xL

1

2

2 1

ˆ,0)(log





.                                                           (6.5) 

Posterior Distribution and Baye’s Estimators under Non-Informative Prior Using 

Different Loss Functions: 

The extended Jeffrey’s prior suggested by Al-Kutubi (2005) is given as 
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Combining the likelihood function (6.3) and the above prior distribution, then the posterior 

density of   is derived as follows: 
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Hence the posterior density of )),12((~)|( 111 TcnGxg +− , where  
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With the above prior, we use three different loss functions namely Al-Bayyati’s loss function 

(ABLF), Entropy loss function (ELF) and LINEX loss function (LLF) to find Bayes estimates 

for the parameter of model (6.1).   
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Under ABLF the risk function is given by 
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On solving (6.8), we get
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Minimization of the risk with respect to ̂  gives us the Bayes estimator: 
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Remark 6.1:  

Replacing 02 =c  and 2/11 =c  in (6.9) we get the same Bayes estimator as obtained under 

SELF using the Jeffrey’s prior, replace 02 =c and 2/31 =c  we get the same Bayes estimator 

as obtained under SELF using Hartigan’s prior and replace 02 =c and 01 =c  we get the we 

get the same Bayes estimator as obtained under SELF using Uniform prior. Under ELF the 

risk function is given by 
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On solving (6.10), we get 
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Remark 6.2:  

Replacing 2/11 =c  in (6.11) we get the same Bayes estimator as obtained under the Jeffrey’s 

prior, replace 2/31 =c  we get the Hartigan’s prior and replace 01 =c  we get the Uniform 

prior. 

Under LLF the risk function is given by 
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On solving (6.12), we get 
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Minimization of the risk with respect to ̂  gives us the Bayes estimator: 
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Remark 6.3:  

If we put 2/11 =c  in (6.13) we get the same Bayes estimator as obtained under the Jeffrey’s 

prior, If 2/31 =c  we get the Hartigan’s prior and If 01 =c  we get the Uniform prior. 

Posterior Distribution and Baye’s Estimators under Informative Prior Using 

Different Loss Functions: 

The gamma distribution is used as an informative prior with hyper parameters banda , having 

the following p.d.f as: 

               
.0,,0;

)(
)( 1

2 


 −− bae
a

b
g ba

a

                            )14.6(
 

 

https://doi.org/10.21467/books.44


Chapter 6: Bayesian Inference for Exponential Rayleigh Distribution Using R Software 

 

 

Bayesian Analysis and Reliability Estimation of Generalized Probability Distributions 

63 

Combining the likelihood function (6.3) and the prior distribution (6.14), then the posterior 

density of   is derived as follows: 

0;
)(

)|( 212
2 

+
=

−−+

+

 Tan

an

e
an

T
xg .                                               )15.6(
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Remark 6.4:  

For 0== ba  in (6.15), the posterior distribution under the gamma prior reduces to 

posterior distribution under the Jeffrey’s prior. 

For 0,1 == ba  in (6.15), the posterior distribution under the gamma prior reduces to 

posterior distribution under the Uniform prior. 

Under ABLF the risk function is given by 
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On solving (3.16), we get
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Minimization of the risk with respect to ̂  gives us the Bayes estimator: 
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Remark 6.5:  

Replacing 02 =c  in (3.17), we get the same Bayes estimator as obtained under the SELF. 

Under ELF the risk function is given by 
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On solving (6.18), we get 
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Under LLF the risk function is given by 
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On solving (6.20), we get 
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Minimization of the risk with respect to ̂  gives us the Bayes estimator: 
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Simulation Study  

In the simulation study, three samples of sizes 25, 50 and 100 to signify small, medium, and 

large data sets have been generated from R software to examine the performance of Classical 

and Bayesian estimates for the parameter of Exponential-Rayleigh (ER) distribution under 

different priors using different loss functions. The data sets are obtained by using the inverse 

cdf method and the value of the parameters  &  are chosen as 5.0=  and 

5.1&0.1,5.0= . The values of Jeffrey’s extension were )4.1,4.0(1 =c  and the values of 

hyper parameters were a= (0.4, 1.4) and b= (0.4, 1.4). The results are replicated 1000 times 

and the average results are presented in table 6.1 and table 6.2. 
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Table 6.1: Baye’s estimators and MSE (in parenthesis) under Extension of Jeffery’s prior 

 

 

n 
 

  1c
 

ML̂  
ABLF̂

 
ELF̂

 

LLF̂
 

c2=0.3
 

c2=-0.3
 

b2=0.4
 

b2=-0.4 

25 
0.5 

 

0.5 

0.4 
0.44148 

(0.0887) 

0.45031 

(0.01033) 

0.43972 

(0.0114) 

0.42736 

(0.0131) 

0.44346 

(0.0111) 

0.44659 

(0.01072) 

1.4 
0.44148 

(0.0887) 

0.41499 

(0.01445) 

0.40439 

(0.0163) 

0.39204 

(0.0188) 

0.40826 

(0.0156) 

0.41115 

(0.01513) 

1.0 

0.4 
0.88297 

(0.4342) 

0.90063 

(0.04131) 

0.87944 

(0.0459) 

0.85471 

(0.0525) 

0.88380 

(0.0449) 

0.89638 

(0.04217) 

1.4 
0.88297 

(0.4342) 

0.82999 

(0.05784) 

0.80879 

(0.0654) 

0.78408 

(0.0755) 

0.81366 

(0.0636) 

0.82524 

(0.06366) 

1.5 

0.4 
1.32445 

(1.1814) 

1.35094 

(0.09295) 

1.31916 

(0.1034) 

1.28207 

(0.1182) 

1.32110 

(0.1027) 

1.34939 

(0.09341) 

1.4 
1.32445 

(1.1810) 

1.24498 

(0.13015) 

1.21319 

(0.1473) 

1.176115 

(0.1700) 

1.21625 

(0.1456) 

1.24230 

(0.13152) 

50 
0.5 

 

0.5 

0.4 
0.4887 

(0.0168) 

0.49356 

(0.00484) 

0.48769 

(0.0049) 

0.48085 

(0.0051) 

0.48967 

(0.0049) 

0.49159 

(0.00487) 

1.4 
0.4887 

(0.0168) 

0.47401 

(0.00528) 

0.46815 

(0.0056) 

0.46131 

(0.0061) 

0.47016 

(0.0054) 

0.47200 

(0.00539) 

1.0 

0.4 
0.97735 

(0.0605) 

0.98712 

(0.01935) 

0.97539 

(0.0197) 

0.96171 

(0.0206) 

0.97744 

(0.0196) 

0.98511 

(0.01940) 

1.4 
0.97735 

(0.0605) 

0.94803 

(0.02112) 

0.93629 

(0.0224) 

0.92262 

(0.0244) 

0.93849 

(0.0221) 

0.94587 

(0.02135) 

1.5 

0.4 
1.4662 

(0.1519) 

1.48068 

(0.04353) 

1.46309 

(0.0445) 

1.44256 

(0.0464) 

1.46332 

(0.0445) 

1.48058 

(0.04353) 

1.4 
1.46602 

(0.1519) 

1.42204 

(0.04751) 

1.40445 

(0.0505) 

1.38392 

(0.0549) 

1.40502 

(0.0504) 

1.42159 

(0.04758) 

100 
0.5 

 

0.5 

0.4 
0.51758 

(0.0083) 

0.51344 

(0.00286) 

0.51706 

(0.0029) 

0.52016 

(0.0030) 

0.518075 

(0.0030) 

0.51915 

(0.00305) 

1.4 
0.51758 

(0.0083) 

0.50308 

(0.00264) 

0.50671 

(0.0026) 

0.50981 

(0.0027) 

0.50773 

(0.0026) 

0.50879 

(0.00271) 

1.0 

0.4 
1.03515 

(0.0329) 

1.02687 

(0.01146) 

1.03412 

0.01190 

1.04033 

(0.0123) 

1.03508 

0.01197 

1.039375 

(0.01229) 

1.4 
1.03515 

(0.0329) 

1.00617 

(0.01056) 

1.01341 

(0.0107) 

1.01962 

(0.0109) 

1.01442 

(0.0107) 

1.01863 

(0.01087) 

1.5 

 

0.4 
1.55273 

(0.0730) 

0.51344 

(0.00286) 

1.55117 

0.0267 

1.56049 

(0.0278) 

1.55102 

(0.0267) 

1.56068 

(0.02784) 

1.4 
1.55273 

(0.0730) 

0.50308 

(0.00264) 

1.52012 

(0.0240) 

1.52944 

(0.0245) 

1.52006 

(0.0240) 

1.52953 

(0.02455) 
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Table 6.2: Baye’s estimators and MSE (in parenthesis) under Gamma prior 

 

n 
   ba =

 
ML̂  

ABLF̂
 

ELF̂
 

LLF̂
 

c2=0.3
 

c2=-0.3
 

b2=0.4
 

b2=-0.4 

25 
0.5 

 

0.5 

0.4 
0.44148 

(0.08879) 

0.45066 

(0.0102) 

0.44014 

(0.01139) 

0.42786 

(0.01301) 

0.44384 

(0.01096) 

0.44697 

(0.0106) 

1.4 
0.44148 

(0.08879) 

0.46013 

(0.0094) 

0.44979 

(0.01036) 

0.43773 

(0.01173) 

0.45339 

(0.01001) 

0.45654 

(0.0097) 

1.0 

0.4 
0.88297 

(0.43422) 

0.89505 

(0.0418) 

0.874151 

(0.04665) 

0.84977 

(0.05338) 

0.87849 

(0.04557) 

0.89082 

(0.0427) 

1.4 
0.88297 

(0.43422) 

0.89858 

(0.0401) 

0.87839 

(0.04469) 

0.85483 

(0.05098) 

0.88256 

(0.04369) 

0.89452 

(0.0410) 

1.5 

0.4 
1.32445 

(1.18140) 

1.33328 

(0.0961) 

1.30215 

(0.10750) 

1.26584 

(0.12319) 

1.30423 

(0.10669) 

1.33158 

(0.0967) 

1.4 
1.32445 

(1.18140) 

1.31685 

(0.0977) 

1.28725 

(0.10948) 

1.25273 

(0.12536) 

1.28937 

(0.10858) 

1.31506 

(0.0984) 

50 
0.5 

 

0.5 

0.4 
0.48867 

(0.01628) 

0.49358 

(0.0048) 

0.48774 

(0.00493) 

0.48093 

(0.00514) 

0.48971 

(0.00489) 

0.49162 

(0.0048) 

1.4 
0.48867 

(0.01628) 

0.49847 

(0.0047) 

0.49268 

(0.00483) 

0.48593 

(0.00498) 

0.49462 

(0.00481) 

0.49653 

(0.0047) 

1.0 

0.4 
0.97735 

(0.06605) 

0.98334 

(0.0192) 

0.97170 

(0.01976) 

0.95813 

(0.02073) 

0.97375 

(0.01965) 

0.98133 

(0.0193) 

1.4 
0.97735 

(0.06605) 

0.98366 

(0.0188) 

0.97224 

(0.01937) 

0.95892 

(0.02029) 

0.97425 

(0.01927) 

0.98169 

(0.0189) 

1.5 

0.4 
1.46602 

(0.15194) 

1.46931 

(0.0432) 

1.45193 

(0.04464) 

1.43164 

(0.04700) 

1.45225 

(0.04461) 

1.46915 

(0.0432) 

1.4 
1.46602 

(0.15194) 

1.45609 

(0.0426) 

1.43919 

(0.04447) 

1.41948 

(0.04725) 

1.43955 

(0.04443) 

1.45586 

(0.0427) 

100 
0.5 

 

0.5 

0.4 
0.51758 

(0.00838) 

0.51341 

(0.0028) 

0.51702 

(0.00297) 

0.52012 

(0.00308) 

0.51804 

(0.00300) 

0.51911 

(0.0030) 

1.4 
0.51758 

(0.00838) 

0.51591 

(0.0029) 

0.51950 

(0.00306) 

0.52259 

(0.00319) 

0.52051 

(0.00309) 

0.52158 

(0.0031) 

1.0 

0.4 
1.03515 

(0.03295) 

1.02469 

(0.0112) 

1.03191 

(0.01169) 

1.03809 

(0.01212) 

1.03288 

(0.01175) 

1.03715 

(0.0120) 

1.4 
1.03515 

(0.03295) 

1.02447 

(0.0111) 

1.03158 

(0.01155) 

1.03771 

(0.01198) 

1.03254 

(0.01161) 

1.03677 

(0.0119) 

1.5 

 

0.4 
1.55273 

(0.07305) 

1.53388 

(0.0250) 

1.54468 

(0.02591) 

1.55394 

(0.02682) 

1.54455 

(0.02589) 

1.55412 

(0.0268) 

1.4 
1.55273 

(0.07305) 

1.52577 

(0.0240) 

1.53641 

(0.02475) 

1.54553 

(0.02549) 

1.53630 

(0.02474) 

1.54567 

(0.0255) 
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From table 6.1 and table 6.2 we conclude that Al-Bayyati’s loss function gives the minimum 

MSE as compared to the other loss functions and among the priors Gamma prior gives the 

less MSE than other assumed priors.  

Conclusion  

In this chapter, we have paralleled the Baye’s estimates of the parameter of the Exponential-

Rayleigh (ER) distribution under extension of Jeffrey’s prior and gamma prior using different 

loss functions with that of maximum likelihood estimate. From the results, Al-Bayyati’s loss 

function gives the minimum MSE as compared to the other loss functions and among the 

priors Gamma prior gives the less MSE than other assumed priors.  
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