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Introduction 

Ailamujia distribution (also known as ЭРланга distribution) was proposed by Lv et al [1] for 

applicability in various engineering fields. He studied various descriptive measures of the newly 

developed lifetime model which include mean, variance, median and maximum likelihood 

estimate. Pan et al [2] considered this distribution for estimating intervals and testing of 

hypothesis. Long [3] obtained the Bayes’ estimates of ЭРланга Distribution under Type II 

censoring for missing data with three different priors. Li [4] estimated the parameters of 

Ailamujia model considering the three loss functions under a non informative prior. Uzma et 

al. [5] proposed the weighted Ailamujia Distribution and applied in reliability analysis. 

Assume X denotes the life span of a product following the Weighted Ailamujia distribution, 

its probability density function and cumulative density function is given respectively as follows: 
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where the shape parameter and c are the weight parameter 
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The likelihood function and the corresponding log likelihood of (5.1) are given in the equations 

(5.3) and (5.4) respectively as: 
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The major focus of the current manuscript is to examine the performance of unknown shape 

parameter   of Weighted Ailamujia distribution under a variety of priors using the two 

Bayesian approximation techniques. 

Bayesian Approximation Techniques of Posterior Modes 

Bayesian paradigm gives a comprehensive model for updating the prior information in view 

of the current knowledge. Those who like the elegance of Bayesian outlook study important 

properties of the posterior and predictive distributions. If the resulting distribution is in closed 

form and difficult to characterize it, analytical or numerical approximation methods are often 

used for accuracy with less computational complicacy. Many authors have reviewed the 

approximation methods including Sultan and Ahmad [6, 7] for Kumaraswamy distribution and 

generalized Power function distribution, Kawsar and Ahmad [8] for Inverse Exponential and 

Uzma and Ahmad [9,10] for Inverse Lomax and Dagum distributions. 

Normal Approximation 

In Bayesian approach, approximation techniques for large samples usually consider the normal 

approximation to the posterior distribution. If the posterior distribution is less skewed with 

sharp peak, the most convenient way is to approximate it by normal distribution. This 

posterior distribution is usually localized near the posterior mode and behaves normal under 

different conditions when the sample size is increased. The Normal approximation for the 

posterior distribution ( )xP | centered at mode is given as 

 ( ) ( ) 




 −1

ˆ,ˆ~|  INxP
                                                                                            

(5.5) 

where ( ) ( )xPI |logˆ
2

2








−=                                                                                            (5.6) 

 Under Jeffery’s Prior ( ) ,
1

1


 g  the posterior distribution is given by 
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Similarly, under Gamma Prior ( ) ,
1
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Also, under the Erlang prior ( ) ,22
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 T-K Approximation   

Laplace’s method proves to be an efficient procedure for solving the difficult integrals which 

arise in mathematics.  For approximating the average values of functions of parameters and 

marginal densities, Laplace’s method is generally used. It is widely applicable method in 

statistics for its simpler computations than the MCMC methods etc. Moreover, Laplace 

method provides better view of the problem. The different manuscripts in literature which 

describe the method include Lindley [11], Tierney and Kadane [12] and Leonard, Huss and 

Tsui [13]. Tierney and Kadane presented the Laplace method for computing ( ) xhE | as 
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where ( ) ( )xPnh |logˆ  =− ; ( ) ( ) ( ) hxPnh log|logˆ* * +=− . 
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Thus, for Weighted Ailamujia distribution, T-K approximation for shape parameter  under 

different priors is obtained as: 

Under Jeffery’s Prior ( ) ,
1

1


 g  the posterior distribution is given by the equation (6) 
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Also, under Gamma Prior, the posterior distribution is given by the equation (5.9) and the 

estimates are given by 
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Similarly, under Erlang Prior ( ) 22
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eg

 −
 , the posterior distribution is given by the 

equation (5.10) and we have 
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Applications 

For comparing the efficacy of different priors and the two approximation techniques for the 

weighted Ailamujia distribution, we have considered the three real life data sets related to 

engineering field. 

Data Set 5. 1: The first data set is provided in Murthy et al. [14] about time between failures 

for 30 repairable items. The data are listed as the following:  

1.43, 0.11, 0.71, 0.77, 2.63, 1.49, 3.46, 2.46, 0.59, 0.74, 1.23, 0.94, 4.36, 0.40, 1.74, 4.73, 2.23, 

0.45,0.70,1.06,1.46, 0.30,1.82, 2.37, 0.63, 1.23, 1.24, 1.97, 1.86, 1.17 

DataSet 5.2: The second data represent the strength data measured in GPA, for single carbon 

fibres and impregnated 1000 carbon fiber tows reported by Badar and Priest [15]. We will be 

considering the single fibres of 10 mm in gauge length with sample sizes 63. 

0.101,0.322,0.403,0.428,0.457,0.550,0.561,0.596,0.597,0.645,0.654,0.674,0.718,0.722,0.725,0.72

3,0.775,0.814,0.816,0.818,0.824,0.859,0.875,0.938,0.940,1.056,1.117,1.128,1.137,1.137,1.177,1.1

96,1.230,1.325,1.339,1.345,1.420,1.423,1.435,1.443,1.464,1.472,1.494,1.532,1.546,1.577,1.608,1.

635,1.693,1.701,1.737,1.754,1.762,1.828,2.052,2.071,2.086,2.171,2.224,2.227,2.425,2.595,2.220 

Data set 5.3:  The third data set is on the strengths of 1.5 cm glass fibres. The data was 

originally obtained by workers at the UK National Physical Laboratory and it has been used 

by Bourguignon et al. [16].  

 

Table 5.1: Posterior estimates for Normal Approximation 

 

 

 

c  

Jeffery’s 

Prior 
Gamma Prior Erlang Prior 

 a1=b1=0.5 a1=b1=1.0 a1=b1=2.0 a2=b2=0.5 a2=b2=1.0 a2=b2=2.0 

Data 

Set I 0.5 
0.79948 

(0.00863) 

0.80055 

(0.00860) 

0.80162 

(0.00856) 

0.80372 

(0.00849) 

0.81130 

(0.00871) 

0.81231 

(0.00868) 

0.81429 

(0.00861) 

1 
0.96153 

(0.01038) 

0.96174 

(0.01033) 

0.96194 

(0.01028) 

0.96235 

(0.01017) 

0.97249 

(0.01045) 

0.97263 

(0.01039) 

0.97292 

(0.01028) 

2 
1.28565 

(0.01388) 

1.28411 

(0.01379) 

1.28259 

(0.01370) 

1.27961 

(0.01353) 

1.29486 

(0.01391) 

1.29328 

(0.01382) 

1.29018 

(0.01364) 
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Data 

Set 

II 

0.5 
0.99914 

(0.00637) 

0.99914 

(0.00635) 

0.99914 

(0.00633) 

0.99915 

(0.00629) 

1.00551 

(0.00639) 

1.00549 

(0.00637) 

1.00545 

(0.00633) 

1 
1.20025 

(0.00766) 

1.19961 

(0.00763) 

1.19898 

(0.00760) 

1.19772 

(0.00755) 

1.20597 

(0.00767) 

1.20532 

(0.00764) 

1.20402 

(0.00758) 

2 
1.60246 

(0.01023) 

1.60054 

(0.01018) 

1.59864 

(0.01014) 

1.59486 

(0.01005) 

1.60690 

(0.01022) 

1.60498 

0.01018) 

1.60117 

0.01009 

 

Data 

Set 

III 

0.5 
0.82429 

(0.00434) 

0.82475 

(0.00433) 

0.82521 

(0.00432) 

0.82612 

(0.00430) 

0.83000 

(0.00436) 

0.83045 

(0.00435) 

0.83133 

(0.00433) 

1 
0.99020 

(0.00521) 

0.99022 

(0.00520) 

     0.99025 

(0.00518) 

    0.99030 

(0.00516) 

0.99548 

(0.00522) 

0.99549 

(0.00521) 

0.99551 

(0.00518) 

2 
1.32202 

(0.00696) 

1.32118 

(0.00694) 

1.32034 

(0.00691) 

1.31867 

(0.00687) 

1.32643 

(0.00696) 

1.32557 

(0.00694) 

1.32388 

(0.00690) 

Table 5.2: Posterior estimates for TK approximation 

 
 
 c  

Jeffery’s 
Prior Gamma Prior Erlang Prior 

 a1=b1=0.5 a1=b1=1.0 a1=b1=2.0 a2=b2=0.5 a2=b2=1.0 a2=b2=2.0 

Data 

Set I 0.5 
0.81029 

(0.00875) 

0.81131 

(0.00871) 

0.81232 

(0.00868) 

0.81430 

(0.00861) 

0.81667 

(0.01766) 

0.81765 

(0.01759) 

0.81957 

(0.01744) 

1 
0.97235 

(0.01050) 

0.97250 

(0.01045) 

0.97264 

(0.01039) 

0.97293 

(0.01028) 

0.97785 

(0.02113) 

0.97797 

(0.02102) 

0.97821 

(0.02080) 

2 
1.29646 

(0.01400) 

1.29487 

(0.01391) 

1.29329 

(0.01382) 

1.29019 

(0.01364) 

1.30023 

(0.02805) 

1.29862 

(0.02787) 

1.29547 

(0.02751) 

Data 

Set II 0.5 
1.005532 

(0.00641) 

1.00551 

(0.00639) 

1.00549 

(0.00637) 

1.00546 

(0.00633) 

1.00869 

(0.01287) 

1.00866 

(0.01283) 

1.00860 

(0.01275) 

1 
1.20663 

(0.00770) 

1.20598 

(0.00767) 

1.20532 

(0.00764) 

1.20403 

(0.00758) 

1.20915 

(0.01543) 

1.20849 

(0.01537) 

1.20718 

(0.01525) 

2 
1.60884 

(0.01027) 

1.60691 

(0.01022) 

1.60498 

(0.01018) 

1.60117 

(0.01009) 

1.61009 

(0.02053) 

1.60815 

(0.020443) 

1.60432 

(0.020266) 
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Data 

Set III 

0.5 
0.82956 

(0.00436) 

0.83000 

(0.00436) 

0.83045 

(0.00435) 

0.83133 

(0.00433) 

0.83263 

(0.00877) 

0.83307 

(0.00875) 

0.83394 

(0.00872) 

1 
0.99547 

(0.00524) 

0.99548 

(0.00522) 

0.99549 

   (0.00521) 

0.99551 

(0.00518) 

0.99810 

(0.01051) 

0.99811 

(0.01048) 

0.99812 

(0.01043) 

2 
1.32729 

(0.00699) 

1.32643 

(0.00696) 

1.32558 

(0.00694) 

1.32388 

(0.00690) 

1.32906 

(0.01399) 

1.32819 

(0.01394) 

1.32648 

(0.01385) 

Conclusion 

From table 5.1 and 5.2, it is clearly evident that the posterior variance of gamma prior is less 

than the other priors under both the approximation techniques especially when the value of 

both the hyper parameters a1 and b1 is taken as 2. Further, it is also noted that the values of 

normal approximation are less than the T-K approximation for all the three data sets. 
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