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Introduction 

As we know some of the family members of generalized power series distributions (GPSD) 

like binomial, negative binomial, Poisson and logarithmic series distributions are widely used 

for modelling count data. The properties of modality and divisibility of these distributions are 

known in the literature. Misra et.al (2003), Alamatsaz and Abbasi (2008), Aghababaei Jazi and 

Alamatsaz (2010), Abbasi et.al (2010) and Aghababaei Jazi et.al (2010) studied the stochastic 

ordering comparison between these distributions and their mixtures.  

For modelling count data like accumulated claims in insurance and correlated count data which 

exhibit over-dispersion has resulted in introduction of zero-inflated and non-zero inflated 

parameter counterparts of the GPS distributions. Neyman (1939) and Feller (1943) studied 

that in some discrete data, the observed frequency for 𝑋 = 0 is much higher than the expected 

frequency predicted by the assumed model. To be more specific, let us suppose that there are 

two machines. One of which is perfect and does not produce any defective item. The other 

machine produces defective items according to a Poisson distribution. We record the joint 

output of the two machines without knowing whether a specific item is produced by one or 

the other. In this case, the zero count seems to be inflated. Pandey (1964-65) studied a situation 

dealing with the number of flowers of plants of Primula veris. He has found that most of the 

plants were with eight flowers and inflated Poisson distribution (inflated at the point 8 not 

zero) proved to be the best model for fitting of such a data set.  A similar data set on premature 

ventricular contractions where the distribution turns out to be inflated binomial has been 

analyzed by Farewell and Sprott (1988). Yip (1988) while dealing with the number of insects 

per leaf came to the conclusion that inflated Poisson distribution is the best fitted model for 

such a data set.  
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Martine, et al. (2005) and Kuhnert, et al. (2005) discussed the applications of zero-inflated 

modeling in ecology. Kolev, et al. (2000) studied the application of inflated-parameter family 

of generalized power series distributions in analysis of overdispersed insurance data. Patil and 

Shirke (2007) and Patil and Shirke (2011a, b) also studied different aspects of the zero-inflated 

power series distributions. From the literature it appears that majority of the study is restricted 

to properties and applications of inflated generalized power series distributions and relatively 

less work has been done on the estimation part particularly the Bayesian estimation of inflated 

generalized power series distributions. We also refer the readers to Winkelmann (2000), 

Hassan and Ahmad (2006), and Aghababaei Jazi and Alamatsaz (2011).  

In this note, we studied the Bayesian analysis of zero-inflated power series distributions under 

different loss function i.e. squared error loss function and weighted squared error loss 

function. The results obtained for the zero-inflated power series distribution are then applied 

to its particular cases like zero-inflated Poisson distribution and zero-inflated negative 

binomial distribution.   

Rodrigues (2003) studied zero-inflated Poisson distribution from the Bayesian perspective 

using data augmentation algorithm. Gosh, et al. (2006) introduced a flexible class of zero-

inflated models which includes zero-inflated Poisson (ZIP) model, as special case and 

developed a Bayesian estimation method as an alternative to traditionally used maximum 

likelihood-based methods to analyze such data.  As disused above, our aim is to give Bayes 

estimators of functions of parameters under different loss functions of zero-inflated 

generalized power series distribution (ZIGPSD) represented by the following probability mass 

function 

P[X = x] = {
α + (1 − α)

a(0)

f(θ)
,        x = 0

(1 − α)
a(x)θx

f(θ)
,     x = 1,2,3, …

     (1.1) 

where 0 < α ≤ 1 is the probability of inflation,  f(θ) = ∑ a(x)θx
x  is a function of parameter 

θ  and is positive, finite and differentiable and coefficients a(x) are non-negative and free of 

. It is clear that for α = 0, the model (1.1) reduces to simple generalized power series 

distribution introduced by Patil (1961).  

The whole article is divided in to different sections. Section 2 deals with the Bayes estimators 

of functions of parameters of zero-inflated generalized power series distribution (ZIGPSD) 

under squared error loss function and weighted square error loss function. Using different 

prior distributions and the results of zero-inflated GPSD, the Bayes estimators of functions 

of parameters of zero-inflated Poisson and zero-inflated negative binomial distributions are 

obtained in Sections 3 and 4 respectively. Finally, in Section 5, a numerical example is provided 

to illustrate the results and a goodness of fit test is done using the Bayes estimators.   

https://doi.org/10.21467/books.44
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Bayesian Estimation of Zero-Inflated GPSD 

Let X1, X2, ⋯ , XN be a random sample of size N drawn from the zero-inflated GPSD (1.1), 

then the likelihood function of  X1, X2, ⋯ , XN  is given by 

L(θ, α x⁄ ) = ∑ (N0
j

)
N0
j=0 αj (1 − α)N−j(a(0))N0−j ∏ a(xi)θt[f(θ)]j−NN−N0

i=1                (1.2) 

where x = (x1, x2, ⋯ , xN ), t = ∑ xi
N−N0
i=1  and  Ni is the number of observations in the i’th 

class such that.∑ Nii≥1 = N. 

For the Bayesian set up, we assumed that, priori,  and α are independent, since in the zero-

inflated distribution, an arbitrary probability is assigned to the zero class. As the parameter α 

represents the proportion of ‘excess zeros’, we may take Beta (u, v) prior as a conjugate prior 

for α ,with prior density function  

g(α) =
αu−1(1−α)v−1

B(u,v)
, 0 < α < 1, 𝑢, 𝑣 > 0       (1.3) 

where, B(u, v) =
Γ(u)Γ(v)

Γ(u+v)
 .          

The prior distribution for  is taken to be conjugate or non-conjugate prior distribution 

denoted by h().   

The Joint posterior probability density function (p.d.f) of  θ and α corresponding to the prior 

h(θ)  and g(α) respectively is given by 

Π(θ, α x⁄ ) =
∑ (

N0
j

)
N0
j=0 αj+u−1 (1−α)N−j+v−1(a(0))N0−j θt[f(θ)]j−Nh(θ) 

∑ (
N0

j
)

N0
j=0

 B(j+u,N−j+v)(a(0))N0−j  ∫ θt[f(θ)]j−Nh(θ)dθ
Θ

 
        (1.4) 

The marginal posterior probability density functions of θ  and  are respectively given by 

Π(θ x⁄ ) =
∑ (

N0
j

)
N0
j=0 αj+u−1 (1−α)N−j+v−1(a(0))N0−j θt[f(θ)]j−Nh(θ) 

∑ (
N0

j
)

N0
j=0

 B(j+u,N−j+v)(a(0))N0−j  ∫ θt[f(θ)]j−Nh(θ)dθ
Θ

 
                                 (1.5) 

Π(α x⁄ ) =
∑ (

N0
j

)
N0
j=0 αj+u−1 (1−α)N−j+v−1(a(0))N0−j  ∫ θt[f(θ)]j−Nh(θ)dθ

Θ
 

∑ (
N0

j
)

N0
j=0

 B(j+u,N−j+v)(a(0))N0−j  ∫ θt[f(θ)]j−Nh(θ)dθ
Θ

 
                          (1.6) 

 The Bayes estimates η̂(θ) of η(θ) and γ̂(α) of γ(α) under the squared error loss 

function (SELF), where η(θ) and γ(α) are respectively the functions of θ and α are given by 

η̂B =
∑ (

N0
j

)
N0
j=0 B(j+u,N−j+v)(a(0))N0−j  ∫ η(θ)θt[f(θ)]j−Nh(θ)dθ

Θ
 

∑ (
N0

j
)

N0
j=0

 B(j+u,N−j+v)(a(0))N0−j  ∫ θt[f(θ)]j−Nh(θ)dθ
Θ

 
    (1.7) 
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γ̂B =
∑ (

N0
j

)
N0
j=0

(a(0))N0−j  ∫ ∫ γ(α)αj+u−1(1−α)N−j+v−1θt[f(θ)]j−Nh(θ)dθ
Θ

1

0
dα 

∑ (
N0

j
)

N0
j=0

 B(j+u,N−j+v)(a(0))N0−j  ∫ θt[f(θ)]j−Nh(θ)dθ
Θ

 
  (1.8) 

Similarly, under the weighted squared error loss function (WSELF) given by

( ) ( )2
d)()(wd),(L −=  and ( ) ( )2

d)()(zd),(L −=  ,  where )(w  is a 

function of , and )(z  is a function of  , d is a decision,  the Bayes estimate w̂ of )(  

and w̂  of )(   are given by  

𝜂̂𝑤 =
∑ (

N0
j

)
N0
j=0  B(j+u,N−j+v)(a(0))N0−j ∫ w(

Θ
θ)η(θ)θt[f(θ)]j−Nh(θ)dθ

∑ (
N0

j
)

N0
j=0

 B(j+u,N−j+v)(a(0))N0−j ∫ w(
Θ

θ)θt[f(θ)]j−Nh(θ)dθ
                                  (1.9) 

γ̂w =
∑ (

N0
j

)
N0
j=0

(a(0))N0−j ∫ ∫ z(α)γ(α)
Θ

αj+u−1(1−α)N−j+v−1θt[f(θ)]j−Nh(θ)dθdα
1

0

∑ (
N0

j
)

N0
j=0

(a(0))N0−j ∫ ∫ z(α)
Θ

αj+u−1(1−α)N−j+v−1θt[f(θ)]j−Nh(θ)dθdα
1

0

                       (1.10) 

Two different forms of w(θ)and z(α) as weights has been considered and are given below: 

(i) Let w(θ) = θ−2, z(α) = α−2, The Bayes estimate η̂M of η(θ)and γ̂M of γ(α) known 

as the minimum expected loss (MEL) estimate are given by 

 𝜂̂𝑀 =
∑ (

N0
j

)
N0
j=0  B(j+u,N−j+v)(a(0))N0−j ∫ η(θ)θt−2[f(θ)]j−Nh(θ)dθ

Θ

∑ (
N0

j
)

N0
j=0

 B(j+u,N−j+v)(a(0))N0−j ∫ θt−2[f(θ)]j−Nh(θ)dθ
Θ

                                        (1.11) 

 γ̂M =
∑ (

N0
j

)
N0
j=0

(a(0))N0−j ∫ ∫ γ(α)
Θ

α(j+u−2)−1(1−α)N−j+v−1θt[f(θ)]j−Nh(θ)dθdα
1

0

∑ (
N0

j
)

N0
j=0 (a(0))

N0−j
B(j+u−2,N−j+v) ∫ θt[f(θ)]j−Nh(θ)dθ

Θ

               (1.12) 

(ii) Let w(θ) = θ−2e−δθ; δ > 0 and  z(α) = α−2e−λα; λ > 0.The Bayes estimate  η̂E of 

η(θ)and  γ̂E of γ(α) known as the exponentially weighted minimum expected loss (EWMEL) 

estimate are given by 

 𝜂̂𝐸 =
∑ (

N0
j

)
N0
j=0  B(j+u,N−j+v)(a(0))N0−j ∫ η(θ)θt−2e−δθ[f(θ)]j−Nh(θ)dθ

Θ

∑ (
N0

j
)

N0
j=0

 B(j+u,N−j+v)(a(0))N0−j ∫ θt−2e−δθ[f(θ)]j−Nh(θ)dθ
Θ

                        (1.13) 

 γ̂E =
∑ (

N0
j

)
N0
j=0

(a(0))N0−j ∫ ∫ γ(α)e−λα
Θ

α(j+u−2)−1(1−α)N−j+v−1θt[f(θ)]j−Nh(θ)dθdα
1

0

∑ (
N0

j
)

N0
j=0 (a(0))

N0−j
B(j+u−2,N−j+v)M(j+u−2,N+u+v−2,−λ) ∫ θt[f(θ)]j−Nh(θ)dθ

Θ

    (1.14)  

where M(a, b; z) is the confluent hypergeometric function and has a series representation 

given by 

  M(a, b; z) = ∑
(a)j zj

(b)jj!
∞
j=0  where (𝑎)0 = 1                    (1.15) 

and (a)j = a(a + 1)(a + 2) … … … (a + j − 1)                   (1.16) 

https://doi.org/10.21467/books.44
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Now, we apply the above results to zero-inflated Poisson and zero-inflated negative binomial 

distributions which are the special cases of the p.m.f. (1.1) and obtain the corresponding Bayes 

estimators of parameters in each case. 

Bayesian Estimation of Zero-Inflated Poisson Distribution 

A discrete random variable X is said to follow zero-inflated Poisson distribution (NZIPD) if 

its probability mass function is given by 

 P[X = x] = {
α + (1 − α)

e−θ

x!
 ,                                       x = 0

  (1 − α)
e−θθx

x!
 ,                                x = 1,2, 3, … 

                              (1.17) 

where 𝜃 > 0, 𝑜 < 𝛼 < 1. 

 If  𝛼 = 0, the model (1.17) reduces to classical Poisson distribution. 

 It is a special case of (1.1) with 

 

 f(θ) = eθ, a(x) =
1

x!
 

In this case, the likelihood function  L(θ, α x⁄  ) is of the form 

 

 L(θ, α x⁄ ) = ∑ (N0
j

)
N0
j=0 αj (1 − α)N−jθte−θ(N−j)                                           (1.18) 

With gamma prior for   given by 

 h(θ) =
ab

Γb
e−aθθb−1, θ, a, b > 0                                                                     (1.19) 

and beta prior for α given by (1.3), the joint Posterior probability density function of 𝜃 and 𝛼 

is given by 

Π(θ, α/x) =  
∑ (

N0
j

)
N0
j=0 α(j+u)−1 (1−α)(N−j+v)−1θ(t+b)−1e−θ(N−j+a)

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

 
Γ(t+b)

(N−j+a)t+b

                                     (1.20) 

The marginal posterior distribution of θ and α are respectively given by 

 Π(θ/x) =  
∑ (

N0
j

)
N0
j=0 B(j+u,N−j+v)θ(t+b)−1e−θ(N−j+a)

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

 
Γ(t+b)

(N−j+a)t+b

                                            (1.21) 
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Π(α/x) =  
∑ (

N0
j

)
N0
j=0

1

(N−j+a)t+b α(j+u)−1 (1−α)(N−j+v)−1

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

1

(N−j+a)t+b

                                                  (1.22) 

Under SELF, the Bayes estimate θ̂B
r  of θr  and α̂B

r  of αr are given by 

  θ̂B
r =  

∑ (
N0

j
)

N0
j=0 B(j+u,N−j+v)

Γ(t+b+r)

(N−j+a)t+b+r

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

 
Γ(t+b)

(N−j+a)t+b

                                                        (1.23) 

  α̂B
r =  

∑ (
N0

j
)B(j+u+r,N−j+v)

N0
j=0

1

(N−j+a)t+b

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

 
1

(N−j+a)t+b

                                                         (1.24) 

Similarly, under WSELF, when w(θ) = θ−2, z(α) = α−2, the minimum expected loss (MEL) 

estimate of η(θ) = θr and γ(α) = αr are obtained as  

 θ̂M
r =  

∑ (
N0

j
)

N0
j=0 B(j+u,N−j+v)

Γ(t+b−2+r)

(N−j+a)t+b−2+r

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

 
Γ(t+b−2)

(N−j+a)t+b−2

                                                 (1.25) 

 α̂M
r =  

∑ (
N0

j
)B(j+u+r−2,N−j+v)

N0
j=0

1

(N−j+a)t+b

∑ (
N0

j
) B(j+u−2,N−j+v)

N0
j=0

1

(N−j+a)t+b

                                                 (1.26) 

Finally, under the weighted squared error loss function, when w(θ) = θ−2e−δθ; δ > 0 and 

z(α) = α−2e−λα, λ > 0, the EWMEL estimate η(θ) and γ(α) are given by 

 θ̂E
r =  

∑ (
N0

j
)

N0
j=0 B(j+u,N−j+v)

Γ(t+b−2+r)

(N−j+a+δ)t+b−2+r

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

Γ(t+b−2)

(N−j+a+δ)t+b−2

                                                  (1.27) 

 α̂E
r =  

∑ (
N0

j
)B(j+u+r−2,N−j+v)M(

N0
j=0 J+u+r−2,N+u+v+r−2;λ)

1

(N−j+a)t+b

∑ (
N0

j
) B(j+u−2,N−j+v)

N0
j=0

M(J+u−2,N+u+v−2 ;λ)
1

(N−j+a)t+b

               (1.28) 

Bayesian Estimation of Zero Inflated Negative Binomial Distribution 

A discrete random variable X is said to have zero-inflated negative binomial distribution 

(ZINBD) if its probability mass function is given by 

 P[X = x] = {
α + (1 − α)(1 − θ)m,                                x = 0

(1 − α)(m+x−1
x

)θx(1 − θ)m,     x = 1, 2, 3, … … .
                                (1.29) 

where 0 < θ < 1, 0 < α ≤ 1 

It is a special case of (1.1) with f(θ) = (1 − θ)−m and a(x) = (m+x−1
x

). 

             If α = 0, the model (1.29) reduces to binomial distribution. 

In this case the likelihood function L(θ, α x⁄  ) is given by 

https://doi.org/10.21467/books.44
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 L(θ, α x⁄ ) ∝ ∑ (N0
j

)
N0
j=0 αj (1 − α)N−jθt(1 − θ)mN−mj                                          (1.30) 

Since 0 < 𝜃 < 1, we have taken two different prior distributions for  given below 

 h1(θ) =
θa−1(1−θ)b−1

B(a,b)
, 0 < θ < 1, a, b > 0                                                             (1.31) 

where B(a, b) =
ΓaΓb

Γ(a+b)
 and  

 h2(θ) =
e−cθθa−1(1−θ)b−1

B(a,b)M(a,a+b;−c)
, 0 < θ < 1, a, b > 0,                                                      (1.32) 

where M(a, b; z) is the confluent hypergeometric function and has a series representation 

given by (1.15) and (1.16) 

The joint posterior p.d.f of θ and α corresponding to the prior h1(θ) and g(α) is given by 

 Π1(θ, α/x) =  
∑ (

N0
j

)
N0
j=0 α(j+u)−1 (1−α)(N−j+v)−1θ(t+a)−1(1−θ)mN−mj+b−1

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

 B(t+a ,mN−mj+b)
                                

(1.33)    

The marginal posterior distribution of θ and α are respectively given by 

 Π1(θ/x) =  
∑ (

N0
j

)
N0
j=0 B(j+u,N−j+v) θ(t+a)−1(1−θ)mN−mj+b−1

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

 B(t+a ,mN−mj+b)
                                                 (1.34)    

 Π1(α/x) =  
∑ (

N0
j

)
N0
j=0  B(t+a ,mN−mj+b)α(j+u)−1 (1−α)(N−j+v)−1

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

 B(t+a ,mN−mj+b)
                                             (1.35)    

Similarly, the joint posterior p.d.f of θ and α corresponding to the prior h2(θ) and g(α) is 

given by 

Π2(θ, α/x) =  
∑ (

N0
j

)
N0
j=0 α(j+u)−1 (1−α)(N−j+v)−1θ(t+a)−1(1−θ)mN−mj+b−1e−cθ

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

 B(t+a ,mN−mj+b)M(t+a,a+b+mN−mj,−c)
                    (1.36)    

The marginal posterior distributions of θ and α are respectively given by 

 Π2(θ/x) =  
∑ (

N0
j

)
N0
j=0 B(j+u,N−j+v) θ(t+a)−1(1−θ)mN−mj+b−1e−cθ

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

 B(j+a ,mN−mj+b)M(t+a,a+b+mN−mj,−c)
                    (1.37)    

 Π2(α/x) =  
∑ (

N0
j

)
N0
j=0  B(t+a ,mN−mj+b)M(t+a,a+b+mN−mj,−c)α(j+u)−1 (1−α)(N−j+v)−1

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

 B(t+a ,mN−mj+b)M(t+a,a+b+mN−mj,−c)
 (1.38)    
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Under SELF, the Bayes estimate of θr  and  αr corresponding to the posterior density (1.34) 

and (1.35) respectively, are given by 

  θ̂1B
r =  

∑ (
N0

j
)

N0
j=0 B(j+u,N−j+v) B(t+a+r ,mN−mj+b)

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

 B(t+a ,mN−mj+b)
                                                              (1.39) 

  α̂1B
r =  

∑ (
N0

j
)

N0
j=0 B(j+u+r,N−j+v) B(t+a ,mN−mj+b)

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

 B(t+a ,mN−mj+b)
                                                             (1.40) 

Under WSELF, when w(θ) = θ−2, z(α) = α−2, the minimum expected loss (MEL) estimate 

of θr and αr corresponding to the posterior density (1.34) and (1.35) respectively, are given 

by 

  θ̂1M
r =  

∑ (
N0

j
)

N0
j=0 B(j+u,N−j+v) B(t+a+r−2 ,mN−mj+b)

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

 B(t+a−2 ,mN−mj+b)
                                                            (1.41) 

  α̂1M
r =  

∑ (
N0

j
)

N0
j=0 B(j+u−2+r,N−j+v) B(t+a ,mN−mj+b)

∑ (
N0

j
) B(j+u−2,N−j+v)

N0
j=0

 B(t+a ,mN−mj+b)
                                                            (1.42) 

Finally under WSELF, when w(θ) = θ−2e−δθ; δ > 0, and z(α) = α−2e−λα, λ > 0, the 

EWMEL estimate of θr and αr corresponding to the posterior density ( 1.34) and (1.35) 

respectively, are given by 

  θ̂1E
r =  

∑ (
N0

j
)

N0
j=0 B(j+u,N−j+v) B(t+a+r−2 ,mN−mj+b)M1

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

 B(t+a−2 ,mN−mj+b)M2

                                                    (1.43) 

where M1 = M(a + t − 2 + r, a + b + t + mN − mj − 2 + r, −δ) 

 M2 = M(a + t − 2, a + b + t + mN − mj − 2, −δ) 

  α̂1E
r =  

∑ (
N0

j
)

N0
j=0 B(j+u−2+r,N−j+v) B(t+a ,mN−mj+b)M3

∑ (
N0

j
) B(j+u−2,N−j+v)

N0
j=0

 B(t+a ,mN−mj+b)M4

                                                    (1.44) 

where M3 = M(j + u − 2 + r, N + u + v − 2 + r, −λ) 

M4 = M(j + u − 2, N + u + v − 2, −λ)

  

Also, SELF, the Bayes estimate of θr  and of αr corresponding to the posterior density (1.37) 

and (1.38) respectively, are given by 

  θ̂2B
r =  

∑ (
N0

j
)

N0
j=0 B(j+u,N−j+v) B(t+a+r ,mN−mj+b)M5

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

 B(t+a ,mN−mj+b)M(t+a,a+b+mN−mj,−c)
                             (1.45) 

where, M5 = M(a + t + r, a + b + t + mN − mj + r, −c) 
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  α̂2B
r =  

∑ (
N0

j
)

N0
j=0 B(j+u+r,N−j+v) B(t+a ,mN−mj+b)M(t+a,a+b+mN−mj,−c)

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

 B(t+a ,mN−mj+b)M(t+a,a+b+mN−mj,−c)
                         (1.46) 

Under WSELF, when w(θ) = θ−2, z(α) = α−2, the MEL estimate of θr and αr 

corresponding to the posterior density ( 1.37) and (1.38) respectively, are given by 

  θ̂2M
r =  

∑ (
N0

j
)

N0
j=0 B(j+u,N−j+v) B(t+a+r−2 ,mN−mj+b)M6

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

 B(t+a−2 ,mN−mj+b)M7

                                                  (1.47) 

where,  M6 = M(a + t + r − 2, a + b + t + mN − mj + r − 2, −c), 

 M7 = M(a + t − 2, a + b + t + mN − mj − 2, −c) 

 α̂2M
r =  

∑ (
N0

j
)

N0
j=0 B(j+u+r−2,N−j+v) B(t+a ,mN−mj+b)M(t+a,a+b+mN−mj,−c)

∑ (
N0

j
) B(j+u−2,N−j+v)

N0
j=0

 B(t+a ,mN−mj+b)M(t+a,a+b+mN−mj,−c)
                              (1.48) 

Finally under WSELF, when w(θ) = θ−2e−δθ; δ > 0, and z(α) = α−2e−λα, λ > 0, the 

EWMEL estimate θr and αr corresponding to the posterior density (1.37) and (1.38) 

respectively, are given by 

  θ̂2E
r =  

∑ (
N0

j
)

N0
j=0 B(j+u,N−j+v) B(t+a+r−2 ,mN−mj+b)M8

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

 B(t+a−2 ,mN−mj+b)M9

                                                      (1.49) 

where M8 = M(a + t − 2 + r, a + b + t + mN − mj − 2 + r, −(c + δ)) 

 

  M9 = M(a + t − 2, a + b + t + mN − mj − 2, −(c + δ)) 

 α̂2M
r =  

∑ (
N0

j
)

N0
j=0 B(j+u+r−2,N−j+v) B(t+a ,mN−mj+b)M(t+a,a+b+mN−mj,−c)M10

∑ (
N0

j
) B(j+u−2,N−j+v)

N0
j=0

 B(t+a ,mN−mj+b)M(t+a,a+b+mN−mj,−c)M11

                                

(1.50) 

 M10 = M(j + u + r − 2, N + u + v + r − 2, −λ)

  

 M11 = M(j + u − 2, N + u + v − 2, −λ) 

An Illustrative Example 

In order to demonstrate the practical applications of the above-mentioned results, we fitted 

the classical Poisson distribution and zero-inflated Poisson distribution to the data pertaining 

to the number of strikes in 4-weaks in Vehicle Manufacturing Industry in the United Kingdom 

during 1948-1958 (Kendall (1961)). The expected frequencies of classical Poisson distribution 

are obtained by maximum likelihood estimator, while the expected frequencies of zero-inflated 
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Poisson distribution are obtained by using Bayes estimators, obtained under square error loss 

function (SELF) and two different weighted square error loss functions. The prior values used 

for the beta distribution (2.2) will be  u = 3, v = 1 , while those used for the gamma 

distribution (3.3) will be a = 0.25 , b = 1 and for exponentially weighted minimum expected 

loss (EWMEL) estimates (3.11) and (3.12) will be δ = λ = 0.25. The values for the prior 

parameters a, b, u, v, δ, λ were chosen so that the posterior distribution would reflect the data 

as much, and the prior information as little, as possible. The observed frequencies, expected 

frequencies, the value of Pearson’s chi-square statistics is given in table-I. 

Table 1:  Number of outbreaks of Strike in Vehicle manufacturing Industry in the U.K. during 

1948-1958 

No. of  

Outbreaks 

Observed 

Frequency 

Expected Frequency 

(Poisson 

Distribution) 

Expected Frequency  

(Zero-inflated Poisson Distribution) 

SELF     WSELF 

MEL EWMEL 

0 

1 

2 

3 

4 

110 

33 

9 

3 

1 

103.5 

42.5 

8.7 

1.2 

0.1 

110.3 

30.4 

11.7 

3.0 

0.6 

107.9 

33.1 

11.7 

2.8 

0.5 

108.0 

33.1 

11.7 

2.7 

0.5 

Total 156 156 156 156 156 

2
 

 3.4317 0.5690 0.3079 0.2796 

Estimated value 

θ 

α 

  

0.4103 

 

0.7673 

0.4532 

 

0.7089 

0.3927 

 

0.7038 

0.3910 

 

Conclusion and Comments 

The values of the expected frequencies and the corresponding 
2 value clearly shows that the 

zero-inflated Poisson distribution provided a closer fit than that provided by the classical 

Poisson distribution. It is also clear from the table that the Bayes estimators obtained under 

https://doi.org/10.21467/books.44
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weighted squared error loss functions (WSELF) gives closer fits than the Bayes estimator 

obtained under squared error loss function (SELF). Also, the exponentially minimum expected 

loss (EWMEL) estimates gives better fits than the minimum expected loss (MEL) estimates. 

Keeping in view the importance of count data modeling it is recommended that whenever the 

experimental number of zeros are more than that given by the model, the model should be 

adjusted accordingly to account for the extra zeros.  
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