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ABSTRACT 

Predicting structural performance under seismic excitation and damage after the seismic event 

plays a vital role in life safety and economics. This study examines the vulnerability to 

earthquakes of a two-story 2D steel moment-resisting frame (SMRF) frame using the 

OpenSeesPy framework. The study utilizes non-linear static and time history analyses to 

evaluate the structures' reaction to seismic forces. The pushover analysis offers vital insights 

into the nonlinear behaviour of structures, whereas time history analysis considers the actual 

ground motion patterns in real-time. There is a lack of comprehensive assessments of machine 

learning (ML) progress within different areas of structural engineering. This includes a 

thorough examination of existing literature that can offer a timely evaluation of methods for 

assessing risk and resilience in the built environment. This study examines the performance 

of the selected ML classification techniques, such as Random Forest(RF), Logistic Regression, 

Decision Tree, K-Nearest Neighbours(KNN), LightGBM, CatBoost, Naïve Bayes, XGBoost, 

and AdaBoost. Binary classification is done to classify the data set as having low and high 

inter-storey drift. These predictions are useful to the government and other private companies 

for preparing an effective methodology to be followed after seismic events, efficient 

retrofitting and rehabilitation to extend the durability of existing structures, insurance 

estimates, decision-making in disaster risk reduction, and others. 

1. INTRODUCTION 

Conducting vulnerability assessments in regions prone to seismic activity is essential for comprehending 

and reducing the potential consequences of earthquakes. Understanding vulnerability aids in creating and 

implementing strict building regulations, guaranteeing that buildings are engineered to endure seismic 

forces. Additionally, it plays a crucial role in preparing for and responding to emergencies, enabling the 

implementation of focused measures in regions with greater susceptibility and enhancing the efficiency of 

recovery activities following an earthquake. Integrating OpenSees in seismic vulnerability assessment 

enhances its capability as it is a powerful tool that facilitates the analysis and understanding of structural 

responses [1], [2]. Recently, OpenSeesPy, which uses the Python module as its scripting language and has a 

provision to provide plots using Python commands, was introduced[3]. Machine learning (ML) has gained 

significant attention and utility in structural engineering. Machine learning methods can improve the 

precision of predicting and classifying structure responses during seismic occurrences by training models 

using past earthquake damage data and including various characteristics  [4], [5]. 

The present study targets this deficiency by assessing the effectiveness of machine learning classification 

methods. The dataset of inter-storey drift obtained from the seismic analysis in Openseespy is subjected to 

binary classification to categorize it into low and high inter-storey drift groups. The SHAP analysis is done 
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to rank the selected random variables. The predictions derived from this research hold significant value for 

government agencies and private firms in developing efficient post-seismic procedures, retrofitting 

methods, insurance estimation, catastrophe risk reduction decision-making, and other pertinent domains. 

2. RESEARCH SIGNIFICANCE 

The seismic vulnerability assessment for buildings using fragility curves is paramount as it enhances public 

safety, community resilience, and sustainable urban development. Moreover, the findings influence 

insurance practices, financial preparedness, and international collaboration on standardized approaches to 

seismic risk reduction. The present study employs a vulnerability assessment framework based on 

OpenSeesPy. This research integrates advanced computational techniques in seismic engineering. 

Incorporating machine learning to classify earthquake damage states based on inter-storey drift adds a 

cutting-edge dimension to traditional seismic vulnerability assessments. It catalyzes policy formulation, 

regulation updates, and public awareness initiatives, ultimately fostering a more resilient and informed 

society in the face of seismic challenges. 

3. MODELLING AND ANALYSIS 

The selected structure is a 2D non-existent two-story SMRF building with plan dimensions of 6 m in the 

X and a floor height of 3.5 m, as shown in Fig. 1. The cross-section adopted for the steel structure in the 

W-section is based on nominal dimension. In this structure, the columns are modelled as distributed 

plasticity elements, and beams are modelled as concentrated plastic elements. The plastic hinges are 

provided as two nodes at the same coordinates, connected via a rotational spring. 

 

Fig 1: 2D Steel moment resisting frame model 

The model is subjected to gravitational forces by utilizing the gravity function, and then modal analysis is 

conducted. In addition, the time history function performs non-linear time-history analysis (NLTHA) using 

the provided ground motion. The analysis techniques are performed using OpenSeesPy commands. The 

code additionally incorporates functions for resetting the analysis environment. In essence, the given code 

functions as a structure for constructing and evaluating a 2D steel moment-resistant frame construction. 

This enables users to examine its performance when subjected to different types of loads. 

Time history analysis considers the dynamic properties of the structure and the applied loads rather than 

reducing the seismic forces into a single static load. The NLTHA incorporated the earthquake loading by 
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utilizing a collection of 20 natural ground motion recordings, as listed in Table 1. Each ground motion data 

consists of one vertical component and two horizontal components. 

Table 1: Selected Ground Motions for Time History Analysis 

Sl No: Earthquake Station 
Time Period 

(sec) 

1 Northridge Beverly Hills 29 

2 Duzce Turkey Bolu 55.9 

3 Hector Mine Hector 45.31 

4 Imperial Valley Delta 100.15 

5 Kocaeli Turkey Duzce 27.185 

6 Kocaeli Turkey Arcelik 30 

7 Kobe Japan Nishi Akashi 40.96 

8 Landers Coolwater 28.002 

9 Superstition Hills El Centro 59.995 

10 Superstition Hills POE road 22.3 

11 Landers Yermo Fire 44 

12 Kobe Japan Shin Osaka 40.96 

13 Manjil Iran Abbar 46 

14 Loma Prieta Capitola 39.005 

15 Loma Prieta Gilroy Array 39.945 

16 Cape Mendocino Rio dell overpass 36 

17 Chi Taiwan CHY-101 90 

18 Chi Taiwan TCU045 90 

19 San Fernando Hollywood LA 79.45 

20 Friuli Italy Tolmezzo 36.345 

4. CLASSIFICATION OF ISD USING ML 

For the binary classification of the inter-storey drift obtained from the seismic analysis with OpenseesPy, 

the methods employed were Logistic Regression, Decision Tree (DT), K-Nearest Neighbouring (KNN), 

Random Forest (RF), XGBoost, LightGBM, CatBoost, Naïve Bayes (NB), Support Vector Machine (SVM) 

and AdaBoost. These algorithms were selected from recently published studies.[6], [7]. Logistic regression 

is a statistical method employed for binary classification problems, in which the outcome variable is 

categorical and consists of two possible classes[8]. Decision Tree recursively partitions the input space into 

regions based on the feature values, guided by a set of decision rules learned from the training data. The 

random forest algorithm is a type of ensemble learning approach that builds numerous decision trees during 

the training process. It then combines the predictions of these trees by voting or averaging in order to 

enhance accuracy and reduce overfitting. 

XGBoost, AdaBoost, CatBoost and LightGBM are boosting algorithms in machine learning, which are 

ensemble methods that combine weak learners sequentially to create strong learners, with each subsequent 

model focusing more on instances that previous models misclassified. AdaBoost is susceptible to noisy data 
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and outliers, and its performance is generally poor when the weak learners are complex or lack diversity [9]. 

CatBoost automatically handles categorical variables by converting them into numerical values using 

advanced encoding techniques [10]. XGBoost enhances classic gradient-boosting algorithms by integrating 

regularisation approaches to reduce overfitting and enhance generalization performance[11]. LightGBM 

uses a tree-based learning algorithm and employs a novel technique called Gradient-based one-sided 

sampling (GOSS) to select the most informative data samples for training, resulting in faster computation 

and reduced memory usage [12]. KNN employs the majority class of the k nearest neighbours in the feature 

space to classify data points. The decision boundary of the KNN algorithm is highly adaptable and can 

effectively handle nonlinear classification tasks by adjusting to the distribution of the data [13]. Naive Bayes 

is a probabilistic classifier that applies Bayes' theorem and assumes that the features are mutually 

independent [14]. The SVM method functions by locating the optimal hyperplane that efficiently separates 

the data points into separate classes while also maximizing the margin between them [15].  

5. DATASET AND METHODOLOGY 

A machine learning task was performed utilizing a Python environment with Jupyter Notebook. The ML 

algorithm was built using Scikit-Learn, a library that offers several tools for model selection, model fitting, 

data preprocessing, and data evaluation [16]. The steel structure used in this study was previously taken to 

create the data set. For this, 20 pairs of ground motions were selected (2 horizontal components of each 

pair), resulting in 40 ground motions. These ground motions were linearly scaled from 0.1 to 1g without 

altering its natural characteristics[17]. Therefore, in total, there were 400 sets of ground motions.  The 

significant random variables influencing the earthquake responses were identified as input parameters, and 

their statistical properties are summarized in Table 2. These random variables and ground motions were 

used as the parameters for the seismic analysis using OpenSeesPy to find the corresponding inter-storey 

drift (ISD). This data set was randomly divided into training (70%) and testing (30%) data. 

As for the distribution of the obtained ISD values, those were classified as damage state 1 (DS1) and damage 

state 2 (DS2) drift; that is, the drift value of less than 1% was considered DS1, and a drift value of more 

than 1% was considered DS2. The proposed framework for the ML classification model is shown in Fig 2. 

As there are 2 damage states, the classification method adopted is binary classification.  

Table 2. Statistical properties of significant random variables 

Parameter 
Designatio

n 

Mean 

(μ) 

COV 

(%) 

Probability 

Distribution 
Source 

Yield Strength of Steel (MPa) fy 355 7.6 Log-Normal (Sadowski et al., 2015) 

Elastic Modulus of steel (MPa) Es 255000 1 Log-Normal (Anisha et al., 2023.) 

Distributed Load (kN/m) DL 20 5 Normal Assumed 

Concentrated Load (kN) CL 50 5 Normal Assumed 

Lumped Mass (ton) m 75 5 Normal Assumed 

The ML models were trained using the training data sets, and the performance of each ML model was 

assessed using the Confusion Matrix (CM). The confusion matrix is a matrix that visually shows the errors 

generated by machine learning models, hence indicating their performance. Fig 3 displays the depiction of 

the confusion matrix. The confusion matrix displays the true and expected classes, with the rows and 

columns corresponding to these classes. The diagonal elements of the confusion matrix indicate the 
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instances that have been accurately classified. The assessment of each machine learning model is quantified 

using precision, F1 score, recall, and accuracy, which are calculated using the confusion matrix [14]. 

The accuracy parameter, used to evaluate overall performance, is computed as the ratio of correctly 

classified examples to the total number of cases. Recall and precision are metrics employed to assess the 

accuracy of machine learning models in forecasting particular damage states. Precision is the measure of 

the ML models' ability to reliably diagnose the fraction of damage states. 

 

Fig 2. Methodology of ML-based classification 

More precisely, accuracy refers to the ratio of accurate positive identifications to the total number of 

positive identifications. Recall, in contrast, denotes the ratio of correctly identified actual positives. The F1 

score is a composite measure that combines recall and precision, offering a well-balanced evaluation of the 

model's performance. The formulas for all the parameters listed above are provided below. 

  
Fig 3: Concept of the confusion matrix 
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Fig 4 illustrates the performance of the machine learning models on the testing data. RF and DT models 

demonstrated a remarkable accuracy rate of 100%. The logistic regression and support vector machine 

(SVM) models achieved considerable accuracy, accurately predicting 97% of the outcomes. It was observed 

that all other boosting models, including XGBoost, CatBoost, and AdaBoost, achieved a higher accuracy 

rate of 100%, except for LightGBM, which had an accuracy rate of 98%. The KNN and Naive Bayes 

models had the lowest accuracy, achieving a rate of 91% when compared to the other 10 machine learning 

models. The performance metrics for each machine-learning model are presented in Table 3. Tree-based 

machine learning models exhibited superior accuracy compared to the other models.    
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Fig 4. Performance of ML models – (a) Logistic Curve, (b) DT, (c) RF, (d) k-NN, (e) 

XGB, (f) LGBM, (g) CB, (h) NB, (i) AdaBoost (j) SVM 

Table 3: Summary of the performance of ML models based on the testing dataset. 

Classifier Accuracy Precision Recall F1-score ROC AUC 

Logistic Regression 0.97 0.98 0.95 0.96 0.99 

Decision Trees 1 1 1 1 1 

k-NN 0.91 0.91 0.91 0.90 0.95 

Random Forest 1 1 1 1 1 

XGBoost 1 1 1 1 1 

LightGBM 0.98 1 0.97 0.98 0.99 

CatBoost 1 1 1 1 1 

Naive Bayes 0.91 1 0.82 0.90 0.99 

AdaBoost 1 1 1 1 1 

SVM 0.97 0.98 0.98 0.97 0.97 

 

The Receiver Operating Characteristic (ROC) curve and Area Under the Curve (AUC) are commonly used 

in binary classification models to evaluate the model's performance and to visualize the trade-off between 

sensitivity and specificity [18]. These curves were generated by plotting the true positive rate (TPR) against 

the false positive rate (FPR).  The performance improves as the curve approaches the abscissa at x = 0 and 

the ordinate at y = 1. The AUC is a numerical measure that indicates how close the curve is to the two axes. 

As demonstrated, the models that utilize tree-based algorithms and boosting techniques exhibit superior 

performance, achieving the highest AUC scores. ROC curve obtained for each ML models are shown in 

Fig 5.             
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Fig 5. ROC Curve of each ML model. 
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6.  SHAP ANALYSIS 

The SHapley Additive exPlanations (SHAP) method, presented by Lundberg and Lee, is a highly effective 

and rigorous approach to interpreting machine learning models. The SHAP technique utilizes conditional 

expectation and game theory to reveal the impact of different input features on each seismic damage grade 

[19]. This method helps comprehend the ML model's inclination toward determining the damage states. 

The boosting ensemble utilizes the SHAP approach to analyze its operational pattern and the correlation 

between input features and seismic damage further. 

Fig 6 presents a comprehensive overview of the significance of the score and the relative significance of 

each input characteristic in predicting outcomes using the RF model, as measured by the mean absolute 

SHAP value. The lumped mass is shown to be the most influential factor in determining the damage 

condition. 

Figure 7 shows the SHAP summary plot for each tag, illustrating the significance and pattern of each input 

variable in predicting each damage state. The horizontal axis reflects the probability of prediction outcomes. 

The vertical axis represents the ordering of significant input variables, arranged in descending order from 

top to bottom. Positive values indicate a greater probability of prediction results, whereas negative values 

indicate a lower probability of prediction results. Based on the SHAP analysis, it is evident that the lumped 

mass is the most influential parameter, with the concentrated load at the nodes of the steel frame being the 

next significant factor. The importance score of the Elastic modulus of Steel was found to be the lowest.  

 

Average impact on model output 

Fig 6: Important score and Relative significance of Input parameters in RF 
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Fig 7: SHAP Summary plot for DS1 and DS2 

7. CONCLUSION 

This study employs ten machine learning algorithms to predict and classify structures into various damage 

states (DS1 and DS2). Among these algorithms, tree-based models such as Random Forest (RF), Decision 

Trees (DT), XGBoost, CatBoost, and AdaBoost demonstrated superior accuracy compared to other 

models. In contrast, K-Nearest Neighbors (KNN) and Naive Bayes models exhibited the lowest accuracy. 

A significant part of the study involved SHAP analysis of the RF model. This analysis revealed that the 

lumped mass is the primary parameter significantly impacting inter-storey drift, which is a critical factor in 

assessing structural damage. The SHAP summary image visually represents the precise impact of each 

variable on estimating the damage status, providing a clear and interpretable insight into the model's 

decision-making process. Overall, the study highlights the effectiveness of tree-based machine learning 

models in accurately predicting structural damage states and underscores the importance of lumped mass 

in influencing inter-storey drift. The use of SHAP analysis further enhances the interpretability of the 

model, making it easier to understand the contribution of different variables to the prediction outcomes. 
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