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ABSTRACT 

Adversarial attacks pose a significant risk to machine learning models by introducing carefully crafted 

perturbations that can mislead the models into producing incorrect outputs. This research investigates 

the effectiveness of denoising autoencoders as a defense mechanism against adversarial attacks on 

image classification tasks. A strategy combining a denoising autoencoder with a convolutional neural 

network (CNN) classifier is proposed and evaluated on the Modified National Institute of Standards 

and Technology (MNIST) dataset. The ability of autoencoders to learn robust representations and 

reconstruct original images from noisy inputs is leveraged to mitigate the impact of adversarial 

perturbations generated by the Fast Gradient Sign Method (FGSM). A K fold cross validation ensemble 

technique was employed to ensure robust and generalizable results. Findings demonstrate the potential 

of autoencoder based defense in enhancing the robustness of classifiers against FGSM adversarial 

attacks, achieving significantly higher classification accuracy compared to the unprocessed adversarial 

set. However, due to the autoencoder being a lossy reconstruction technique, a trade off between 

robustness and overall classification performance is observed, with diminishing effectiveness for more 

severe adversarial perturbations. Despite these limitations, the research motivates further research into 

autoencoder based defense mechanisms, exploring more complex architectures, combining with other 

techniques such as ensemble learning, and extending to real world applications. 
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1 Introduction 

Deep neural network models have achieved great success across various applications, including image 

classification. However, recent studies have exposed a disconcerting vulnerability known as adversarial 

attacks [1]. An adversarial attack occurs by introducing small and specifically designed distortions of the 

input data that lead the machine learning model to produce dramatically incorrect outputs. Adversarial 

examples are often imperceptible to humans and can pose a serious security threat to the deployment of 

machine learning systems in safety critical applications like autonomous driving, medical diagnosis, and 

cybersecurity. For their effective utilization, many of the proposed and developed defense strategies have 

also been reported [2]–[6]. Denoising autoencoders are examples of one such useful technique. 

Autoencoders are a class of neural network architectures constructed to learn compact representations of 

input data through encoding and subsequent decoding [3]. Their ability to reconstruct original inputs from 

noisy versions has led to applications in anomaly detection and denoising tasks. This characteristic of 

autoencoders makes them potentially valuable tools for filtering out adversarial perturbations, which can 

be viewed as a specific type of noise introduced to mislead the classifier and reduce accuracy. 

https://aijr.org/about/policies/copyright/
https://doi.org/10.21467/proceedings.178
https://aijr.org/


Bhatia et al., AIJR Proceedings, pp.150-158, 2025 

 

 

Proceedings of 2nd International Conference on Emerging Applications of Artificial Intelligence, Machine Learning and Cybersecurity  

151 

1.1 Autoencoders for Denoising 

Autoencoders are neural networks made up of two primary components which include an Encoder and a 

Decoder. The encoder takes the input data (an image, in this case) and maps it into latent space, which is a 

simply lower dimensional representation of an image. From this latent representation, the decoder 

reconstructs the original input, minimizing reconstruction error. An autoencoder is trained to minimize the 

reconstruction error of the input relative to its decoded version [3]. The schematic representation of the 

autoencoder shown in Figure 1, provides a brief overview of the encoding and decoding processes. For 

adversarial defense, denoising autoencoders are trained specifically on noisy versions of the input images. 

In image processing, an autoencoder learns how to recreate the original image from a corrupted version by 

emphasizing on the vital features of images and suppressing the noise. This characteristic of denoising 

autoencoders makes it a promising tool for combating adversarial attacks. 

 

 

Figure 1: Autoencoder architecture illustrating different components involved in training process 

 

1.2 The Fast Gradient Sign Method (FGSM) 

The Fast Gradient Sign Method (FGSM) is a prominently used technique to produce adversarial samples. 

It functions by computing the loss function of the gradient concerning the input image. The sign of this 

gradient is then taken and multiplied by a small perturbation factor (epsilon). This modified gradient is 

added to the original image, thereby pushing the decision boundary of the model in a direction that increases 

the likelihood of misclassification. While computationally efficient, FGSM is considered a white box attack, 

meaning the attacker can access the internal model features and gradients. 

1.3 K Fold Cross Validation 

The K fold cross validation technique is employed to ensure the robustness and generalization of the 

autoencoder based defense strategy. This ensemble learning technique works by partitioning the dataset 

into K subsets called folds, and then it trains and evaluates the model iteratively on different combinations 

of these folds. Specifically, in each iteration, one of the folds is taken out as the validation set, while the 

remaining (K - 1) folds are used for training purposes. This iterative process is repeated K times, in which 

each fold serves as the validation set exactly once. More reliable estimates of performance and generalization 
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parameters are obtained by K fold cross validation and the problems associated with overfitting or bias 

which occur in a single train test split are almost eradicated. This enhances the generalizability of the results 

and allows for a more complete assessment to be made for enhancing the effectiveness of autoencoders in 

defending against adversarial attacks. 

1.4 Research Focus 

This research evaluates the efficacy of denoising autoencoders against FGSM adversarial attacks in an image 

classification task using the MNIST dataset. The primary goal is to assess the performance of autoencoders 

in reconstructing and denoising adversarial images so that the performance of the model on clean images 

is not affected while making it more resistant to adversarial perturbations. Specifically, the performance of 

the autoencoder based defense is examined in terms of classification performance, reconstruction loss and 

computational cost by applying the K fold cross validation ensemble technique for obtaining strong and 

generalizable conclusions from the experiment. Furthermore, the potential of combining the autoencoder 

with other defense mechanisms is explored to provide a more comprehensive defense against adversarial 

attacks. 

2 Related Works 

Adversarial attacks have been recognized as a significant threat to machine learning models, particularly 

deep neural networks [1], [2]. Initial observations showed that adding imperceptible perturbations to input 

data can cause neural networks to produce incorrect outputs [1]. Following this, Fast Gradient Sign Method 

(FGSM) was proposed as an efficient technique to generate adversarial examples, highlighting the 

vulnerability of neural networks to such attacks [2]. To overcome these vulnerabilities, various defense 

mechanisms have been developed, including adversarial training, input transformations, and model 

modifications [4]–[6]. Adversarial training involves augmenting the training data with adversarial examples 

to improve model robustness [4], while input transformations, such as denoising or compression, aim to 

remove adversarial perturbations from the input data [5]. Model modifications encompass architectural 

changes or regularization techniques designed to enhance resilience against attacks [6]. 

Denoising autoencoders have emerged as a promising input transformation technique for adversarial 

defense [3]. Their ability to reconstruct clean inputs from corrupted versions has been explored across 

various domains, including image classification [7], speech recognition [8], and malware detection [9]. This 

versatility demonstrates the potential of autoencoders as a generalizable defense mechanism against 

adversarial attacks in diverse applications. Additionally, innovative approaches like Feature Squeezing [10] 

and Defense GAN [11] aim to reduce the attack surface available to adversaries by coalescing samples 

within small spatial regions or leveraging generative models to project inputs onto safe manifolds before 

classification. Recent comparative studies, such as [12], have further contributed to understanding 

adversarial attacks by analyzing their effects across different pre trained models, which is crucial for 

identifying common vulnerabilities and informing the development of more robust defense strategies. 

Despite these advancements, challenges remain, including the trade off between model robustness and 

overall performance [13]. This highlights the ongoing need for defense mechanisms that maintain high 

performance on unperturbed inputs while effectively mitigating the impact of adversarial attacks. This 

research builds upon these insights by investigating the effectiveness of denoising autoencoders coupled 

with ensemble learning techniques like K fold cross validation to develop a more robust and generalizable 

defense strategy against FGSM attacks in image classification tasks. 
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3 Methodology 

3.1 Dataset 

Experiments were conducted using the MNIST dataset, which is a prominently used benchmark for image 

classification tasks. The MNIST dataset consists of 70,000 grayscale images of handwritten digits, each of 

28x28 pixels. A training set comprising 60,000 examples and a test set of 10,000 examples is used, with each 

example belonging to one of ten classes. The simplicity and well understood nature of the MNIST dataset 

makes it ideal for exploring adversarial attacks and defense mechanisms. Though the low complexity of the 

dataset may not fully reflect real world scenarios, the insights gained from these experiments can serve as a 

foundation for future research on more complex datasets and applications. 

3.2 Image Classification Model 

The classification task utilizes a Convolutional Neural Network (CNN) architecture consisting of two 

convolutional layers, each followed by a max pooling layer, and a fully connected layer with a softmax 

activation function for multiclass classification. The first convolutional layer has 32 filters with a kernel size 

of 3x3, followed by a 2x2 max pooling layer. The second convolutional layer has 64 filters with a kernel size 

of 3x3, followed by another 2x2 max pooling layer. The flattened output is then fed into a fully connected 

layer with 10 units, representing the 10 digit classes. The CNN model is trained on the MNIST training set 

using the Adam optimizer and categorical cross entropy loss function. A batch size of 128 is used to train 

the model for approximately 20 epochs. This model serves as the baseline for evaluating the impact of 

FGSM attack and the effectiveness of the autoencoder based defense strategy. 

3.3 Adversarial Attack Generation 

The adversarial pattern generation is a crucial component of the methodology process which focuses on 

creating perturbations in input data to mislead neural network models using the Fast Gradient Sign Method 

(FGSM) [2]. FGSM operates by perturbing input data based on the gradient information of the loss function 

for the input calculating perturbations to maximize loss and lead to misclassifications. The perturbed image 

X adversarial is mathematically generated using the following formula 

                     𝑋(𝑎𝑑𝑣)  =  𝑋 +  𝜖𝛴(𝛻𝑋𝐽 (𝑋, 𝑌(𝑡𝑟𝑢𝑒)))              (1) 

where X represents the original input image, Y(true) is the true label, J is the loss function, ∇X denotes the 

gradient with respect to X, 𝛴 indicates the signum function, and ϵ controls the magnitude of the 

perturbation. By adjusting ϵ, the strength of the attack is controlled. Smaller ϵ values result in subtle 

perturbations, while larger values lead to more pronounced changes. 

3.4 Denoising Autoencoder Architecture 

The denoising autoencoder architecture employed in this research study consists of an encoder and a 

decoder network, inspired by techniques outlined in the Keras blog [14]. The encoder network is a CNN 

structure that maps the input image (28x28x1) to a lower dimensional latent representation. It includes a 

convolutional layer with 16 filters, a 3x3 kernel size, ReLU activation, and a stride of 2, followed by another 

convolutional layer with 8 filters, a 3x3 kernel size, ReLU activation, and a stride of 2. The decoder network, 

a transpose convolutional network, uses the latent representation learned by the encoder to attempt 

recreating the original input image. It comprises a transpose convolutional layer with 8 filters, a 3x3 kernel 

size, ReLU activation, and a stride of 2, followed by another transpose convolutional layer with 16 filters, a 
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3x3 kernel size, stride of 2, and ReLU activation. The final layer is a convolutional layer with 1 filter, a 3x3 

kernel size, and sigmoid activation to produce the reconstructed 28x28x1 image. The autoencoder is trained 

on the MNIST training set with added Gaussian noise with noise factors of 0.1, 0.2, and 0.3 to simulate 

noisy input conditions. The objective is to minimize the mean squared error (MSE) between the input 

images and their reconstructed counterparts using the Adam optimizer. 

3.5 Ensemble Learning Implementation 

The K fold cross validation technique is utilized to ensure the autoencoder based defense mechanism is 

robust and generalizable. By dividing the dataset into K equal sized subsets or folds, this strategy trains and 

assesses the model repeatedly using various fold combinations. In each of the iterations, one fold is taken 

as the validation set, while the remaining (K - 1) folds are used for training. The entire process is executed 

K times, resulting in each fold being used as a validation set once. The entire process is executed K times, 

resulting in each fold being used as a validation set once. The final performance metric is computed as the 

average across all K iterations. In the experiments, K is set to 10, resulting in a 10 fold cross validation 

process. This approach helps mitigate the risk of overfitting or bias introduced by a single train test split 

and provides a more reliable estimate of performance of the model on unseen data. 

3.6 Experimental Setup 

The primary goal of the experiments was to evaluate the effectiveness of the denoising autoencoder in 

reconstructing and denoising adversarial images generated by the Fast Gradient Sign Method (FGSM) 

attack, thereby enhancing the robustness of the image classification model against adversarial perturbations. 

The experiments followed a systematic approach, which began with training a Convolutional Neural 

Network (CNN) image classification model on the MNIST training set. Adversarial examples were then 

generated from the MNIST test set using the FGSM attack. Subsequently, a denoising autoencoder was 

trained on the MNIST training set with added Gaussian noise. The adversarial examples were passed 

through the trained autoencoder to obtain reconstructed and denoised images.  For each fold of the K fold 

cross validation, the dataset was split into training and validation sets based on the current fold assignment. 

A new CNN classifier was trained on the training set of the current fold, and its performance was evaluated 

using the denoised images as the test set. Classification accuracy and loss were recorded for each fold. 

Ultimately, the performance of the CNN classifier was comprehensively assessed on three distinct sets: the 

clean test set, containing original MNIST test images, the adversarial test set, consisting of adversarial 

examples generated by FGSM, and the reconstructed test set, comprising denoised adversarial examples 

from the autoencoder. Classification accuracy and loss were meticulously measured and compared across 

these sets to assess the effectiveness of the autoencoder based defense strategy. Furthermore, original, 

adversarial, and reconstructed images were meticulously visualized and compared to qualitatively analyze 

the ability of autoencoders to denoise and recover the original image content from adversarial perturbations. 

The experiments were conducted on a system configured with an Intel Core i7 processor, 16 GB RAM, 

and an NVIDIA RTX 3080 GPU. TensorFlow 2.13 was employed for model development, and the 

Adversarial Robustness Toolbox library facilitated adversarial sample generation and evaluation. 

4 Results and Discussion 

4.1 Visualizing Adversarial Examples and Reconstructions 

To qualitatively assess the impact of adversarial perturbations and the ability of autoencoders to reconstruct 

and denoise the images, a sample of original, adversarial, and reconstructed images from the MNIST test 

set were visualized. 
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 Figure 2: Sample of original, adversarial, and reconstructed image from the MNIST test set 

Figure 2 illustrates comparisons between original images, adversarial images, and reconstructed images. The 

pristine MNIST digit serves as the baseline for comparison. The subtle noise introduced by the FGSM 

attack, although not visible to the human eye, significantly impacts the performance of classifiers, 

highlighting the deceptive nature of adversarial attacks. The denoising autoencoder demonstrates its ability 

to filter adversarial perturbations and recover the overall structure of digits. While not a perfect restoration, 

this reconstruction is significantly closer to the original image, improving the chances of accurate 

classification. 

 

Figure 3: Comparative illustration of noisy images and images reconstructed with autoencoder training process  

Figure 3 illustrates the core concept behind the autoencoder based defense. By training the autoencoder on 

noisy variations of MNIST digits, it learns to reconstruct the underlying clean images. Even though the 

reconstructions may exhibit some minor artifacts, they preserve the essential features necessary for 

successful digit classification. This training strategy enables the autoencoder to denoise perturbed images 

effectively. 

4.2 Classification Performance on Clean and Adversarial Examples 

10.3 The effectiveness of the autoencoder based defense was quantitatively evaluated by 

comparing the classification performance of CNN model under the following different 

conditions 

1.  Clean Test Set: Original MNIST test images. 

2.  Adversarial Test Set: Generated by FGSM attacks with varying epsilon (ϵ) values. 

3.  Reconstructed Test Set: Obtained by passing adversarial images through a denoising 

autoencoder (which may be trained on varying noise factors). 

4.  K Fold + Reconstructed Test Set: The same process as above, but with the addition of K fold 

cross validation for training and evaluation. 
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Table 1: Comparison of classification accuracy across clean, adversarial, and reconstructed test sets. 

Strategy Classification Accuracy 

Base Model (Clean) 99.06% 

Adversarial (ε=0.1) 81.48% 

Autoencoder (Noise factor=0.1) 

 

96.21% 

K Fold + Autoencoder 

 

97.07% 

Adversarial (ε=0.2) 30.30% 

Autoencoder (Noise factor = 0.2) 89.88% 

K Fold + Autoencoder 93.01% 

Adversarial (ε=0.3) 8.38% 

Autoencoder (Noise factor = 0.3) 68.04% 

K Fold + Autoencoder 77.35% 

Table 1 presents the classification accuracy values for various experimental setups. On the clean test set, 

the base learner (CNN model without any defense) achieves an accuracy of 99.06%, indicating its high 

performance on unperturbed images. However, when evaluated on the adversarial test sets generated by 

FGSM with increasing perturbation factors (ε = 0.1, 0.2, and 0.3), the accuracy of the model drops 

significantly, demonstrating its vulnerability to adversarial attacks. After applying the autoencoder based 

defense strategy, we observe a substantial improvement in classification accuracy on the reconstructed test 

sets. For instance, with a perturbation factor of 0.2, the autoencoder (trained on noise factor 0.2) improves 

the accuracy from 30.30% on the adversarial set to 89.88% on the reconstructed set. Furthermore, the K 

fold cross validation technique (k=10) with the autoencoder provides a more robust and generalizable 

estimate of performance of the model, achieving an accuracy of 93.01% on the reconstructed set. 

It is important to note that while the autoencoder based defense strategy significantly enhances the 

robustness of the model against adversarial perturbations, the level of improvement diminishes as the 

perturbation factor increases. For example, with a perturbation factor of 0.3, the autoencoder (trained on 

noise factor 0.3) and the K fold cross validation setup achieve accuracies of 68.04% and 77.35%, 

respectively, on the reconstructed set, which are lower than the accuracies achieved for smaller perturbation 

factors. It is to be noted that using K fold ensemble learning, the accuracy of classification has improved 

thus cementing the fact that ensemble learning in conjunction with autoencoder can provide a significant 

jump in the robustness of neural networks against FGSM adversarial attack. 

4.3 Discussions and Implications 

The experiments demonstrate the potential of denoising autoencoders in defending against adversarial 

attacks on image classification tasks. The ability of autoencoders to learn robust representations and 

reconstruct original images from noisy inputs leads to significant improvements in the robustness of CNN 

classifier FGSM adversarial attacks. Crucially, the results highlight the importance of aligning the noise 

training level of autoencoder with the anticipated attack strength. For optimal protection, the noise factor 

used to train the autoencoder should be similar to the epsilon value employed in the FGSM attack. While 

the autoencoder based defense strategy enhances performance against adversarial examples, it generally 
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does not fully restore the original level of accuracy achieved on clean images. This suggests a potential trade 

off between adversarial robustness and overall classification performance. The denoising process may 

inadvertently alter some features critical for accurate classification. Furthermore, the experiments focused 

specifically on the FGSM attack. More sophisticated attack techniques, such as iterative or targeted attacks, 

could pose greater challenges for denoising autoencoders. In order to ensure generalizability, it is vital to 

evaluate the effectiveness of this defense strategy against a diverse range of adversarial attacks. The benefits 

of integrating K fold cross validation into the autoencoder based defense are also observed. The results 

suggest that K fold helps the autoencoder learn even more robust representations. Statistical significance 

tests would help determine the reliability of these observed improvements. If deemed significant, K fold 

integration could provide an additional layer of resilience in adversarial defense strategies. 

5 Conclusions 

This research investigates the effectiveness of denoising autoencoders as a defense mechanism against 

adversarial attacks on MNIST image classification. The findings demonstrate the potential of autoencoder 

based defenses in enhancing the robustness of convolutional neural network (CNN) classifiers against 

adversarial perturbations. By leveraging the ability of autoencoders to reconstruct original images from 

noisy inputs, significant improvements in classification accuracy on adversarial examples are achieved as 

compared to unprocessed adversarial sets. The integration of K fold cross validation further improves the 

robustness and generalizability of the results. While the proposed approach significantly reduced the impact 

of Fast Gradient Sign Method (FGSM) adversarial attacks, a trade off between adversarial robustness and 

overall classification performance was observed, as the denoising process may inadvertently alter some 

features critical for accurate classification. The effectiveness of the proposed approach diminishes with 

increasing perturbation strength, highlighting a limitation of this defense strategy that could be addressed 

by exploring adaptive autoencoder architectures. Future work should focus on investigating more complex 

autoencoder architectures, combining autoencoders with other advanced defense techniques to develop 

more comprehensive solutions, and extending the approach to diverse datasets and real world applications. 

Additionally, evaluating the defense strategy against a wider range of adversarial attack methods would 

provide a more comprehensive assessment of its effectiveness. Overall, this research contributes to the 

ongoing efforts to develop more resilient ML models which are capable of withstanding adversarial attacks 

in critical application domains such as autonomous systems and cybersecurity. 
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