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ABSTRACT

A topological index (TT) is a real number that defines the relationship between a chemical structure and
its properties and remains invariant under graph isomorphism.TTs defined for chemical structures are
capable of predicting physical properties, chemical reactivity and biological activity. Several kinds of
TIs have been defined and studied for different molecular structures.Graphene is the thinnest material
known to man and is also extremely strong while being a good conductor of heat and electricity. With
such unique features, graphene and its derivatives have found commercial uses and have also fascinated
theoretical chemists. In this article, the neighbourhood sum degree-based M-polynomialand entropy
measures have been computed for graphenestructures. The proper analytical expressions for these
indices are derived. The obtained results will enable theoretical chemists to study these exciting

structures further from a structural perspective.
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1 Introduction

Graph theoretical tools have been gaining popularity as the primary techniques for the theoretical study of
chemical compounds. QSAR/QSPR techniques, in particular, are regarded as useful computational and
quast strategies for trying to predict the characteristics of chemical substances. These techniques are crucial
in the development of new and more effective herbicides because their properties can be estimated prior
to synthesising and thus influence the design. Furthermore, experimental measurements can be replaced by
QSPR/QSAR models, which are less expensive and time-consuming [1]. In this context, TIs provide a

quantitative characterisation of the molecular topology.

A topological index (TT) of a molecular graph is a specific number that describes one or more physical or
chemical characteristics of the underlying molecular structure. It can also be defined as a score function
which maps each component of a molecular structure to a distinct numerical value. One of the primary
advantages of using TIs is that they can be used to sort a large number of molecular structures into smaller
groups for more accessible analysis according to the magnitude of the indices. Therefore, the study of these
indices supports the theoretical analysis of chemical compounds without involving practical experiments,

thus saving time and effort involved in their research.

The first occurrence of a topological index in the literature is in the pioneering work of the eminent chemist
Wiener. He described the boiling point of alkanes in terms of a path number W, which is the sum of the
distances between any two atoms within the molecule. This path number later became known as the Wiener
index and has been studied extensively [2].This ground-breaking work kickstarted the research on
topological indices, and its mathematical investigation began in the 1970s. Since the behaviour and
properties of molecules rely heavily on the corresponding molecular structures, TIs have now been

established as major molecular indices in theoretical chemistry.

A considerable number of topological indices have been proven to display a strong correlation with several

properties of chemical compounds. Due to their ability to characterise a large variety of physical and
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chemical properties, the study of topological indices has wide-ranging applications in various fields,
including computer-assisted drug discovery, deriving multi-linear regression models [3], aromatic sextet
theory [4], and thermochemistry [5]. The comparative ease of using molecular TIs to determine the
physicochemical properties as opposed to the complex quantum chemical calculations has also found
several applications for these TIs [6]. Thus, it becomes vital to determine the various molecular indices of
molecules so that suitable indices are applied to attain the desired correlations between their properties and

structures.
2 Mathematical Concepts

Throughout this research, we consider only a simple and connected graph without multiple edges and self-
loops. The graph I is said to be a connected graph with vertex set V(I") and edge set E(I"). The degree of

the vertex is represented as d,.
2.1 Neighbourhood Degree Sum-Based Indices

The neighbourhood sum VDB TIs are denoted by N (V). The neighbourhood sum degtee of the molecular
graph is represented as |[Np(v)| = d,,. The Np(v) denotes the sum of the degrees of the neighbouring
vertices of V. Let's define the neighbourhood sum degree-based M-polynomial of ',

NM(I') = Z (Number of all edges pq such that H, = i,H, = j)r‘t/.

i<j
The vertex degree and neighbourhood degree sum-based (ND) T1s are depicted as [10,11]
D) = Z 9(@usv)
uveE(l)

and NM(F) 4 ZuveE(F) g(wuwv)-
The derivations of NM-Polynomial are listed below in Table 1.

Table 1. NM-Polynomial Expressions

S.no VDB Tls derived from NM(I;,t)

1. M,(I') = Dy + D(NM(I';7,0))|,_,,

2. M,(I') = Dy D(NM(T;7, )|, _,_,

3. M () = $;Se(NM(T';7, ), —,

4 Ro(I) = DEDENM(7, )], _,_,

5. RRo(I) = SFSE(NM(T5m, )|,y

6. SDD(I) = (D¢ + DSHNM(T5 7, )| _,_,
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7 H() = 28, J(NM(T;7,0)] _,

8. I(I) = $;JDD(NM(T;7, )| ,._,

9. A(I) = S3Q_, JDEDF(NM(T; 7, 0)|,_,
10. 1 11

ABC(I') = DZQ_JS}S

t

(NM(T5, )]

11. 11
GA(I) = 2S,JDZDE(NM (T, )| _

12. By(I') = (D, + D; + 2D,Q_,))(NM(T'; 7, £))|

r=t=1

13. B,(I') = DyQ_2J (Dy + DY(NM(T'; 7, 1) ,._,

14, HB,(I') = D? + D? + 2D2Q_,] + 2D,Q_,] (D, + D)(NM(T; 7, 1))

r=t=1

2.2 Neighbourhood Degree Sum-Based Entropy Measures

In his seminal work, Shannon defined entropy as a measure of the unpredictable nature of relevant
information ot a way of measutring a system's uncertainty. This paper laid the foundation for modern
information theory. The entropy formulaec have been used to quantify a network's structural
informativeness [12]. Though information theory was initially used exclusively in electrical engineering and
linguistics, its versatile nature found applications in life sciences like chemistry and biology [13] and in graph
theory for chemical networks. The notion of graph entropy was proposed to quantify the topological

information of chemical networks and graphs.

Rashevsky [14] developed the concept of graph entropy depending on the vertex orbits. The graph entropy
measures enable mathematicians to relate graph components such as edges and vertices with probability
distributions, categorised as intrinsic and extrinsic measures. Graph entropies have wide-ranging
applications in many fields, including chemistry, ecology, sociology, and biology [15,16].Dehmer introduced
graph entropies that captured the structural information based on information functionals and studied their
properties [17,18]. Estrada et al. [19] introduced a physically-sound graph entropy measure and analysed
the walk-based graph entropies [20]. The applications of entropy network measures range from
quantitatively describing a molecular structure to exploring biological and chemical features of molecular
graphs. The entropy measures have several applications in the fields of chemical graph theory. It is used to

analyse complex networks and their chemical properties.
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For the connected graphl” Shannon's entropy is depicted as

Let I" be a graph with vertex v; and d; be the degree of v; for the given edge u;V; , then one can define

w(uv;)

Pij = di—]’
il wuw))

Where w(u;vj) be the weight of the edge w;v; and w(u;v;) > 0. The node entropy is defined as

d;

ENT;(v;) = —Z Pijlog (Py)
=

For an edge weighted graph I' = (V, E, w), the entropy measure of I' is defined as [21]

ENT-(I',w) = — Z P, log log Py, ,
UVEE(I")
Where,
w(uv)
Py =

ZuveE(F) w(uv)

ENTx(I') = — Z P,y loglog P,
UveE(r)

F(dy.dy) F(dy.dy)

=- ZquE(F) X(I) log log X

! F(dy, dy)
TR, O 0 T
1
- _m Z F(d,,d,)(log log F(d,,d,)) — (log log X(I'") )

UVEE(I)

=log log X(I') — %r) Yuvesay F(dy dy)log log F(dy,dy).

Where TI(I') = X.
2.3 Computing the Neighbourhood Sum Degree-Based M-polynomial for g-Graphene

In this section, the proper analytical expressions of neighbourhood degree sum-based indices and entropy
measures are computed using the M-polynomial for 3-Graphene. Graphene is a carbon allotrope, a two-
dimensional hexagonal network in which the carbon atoms form vertices with spohybridisation. Graphene
has many exceptional properties, including mechanical strength, optical transparency, and electric and
thermal conductivity. Furthermore, the one-atomic layer structure of graphene makes it ultralight and super
thin. Graphene has a thickness of about 0.35 nm, which is approximately 1 /200,000th of the thickness of
human hair. However, the closely arranged carbon atoms and the spz orbital hybridisation provide
exceptional stability to the graphene structure. Thus, graphene shows extraordinary transparency of 97.7
percent, which means that it only absorbs 2.3 percent of visible light [22].
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Due to its high conductivity, graphene can provide a possible alternative to many common substances used
as membranes, including indium tin oxide (ITO) and fluorine-doped tin oxide (FT'O). The use of graphene
for these applications could address the issues of limited indium resources, pollution, and fragility. A
membrane with graphene as the primary component could be used as a window barrier in dye-sensitised
LEDs and solar cells. It is also possible for graphene to also exist as a nanoribbon in which a lateral charge
movement causes an energy barrier to form close to the central point. A reduction in the thickness of the
nanoribbon raises this energy barrier. [23]. Hence, by carefully adjusting the width of the graphene
nanoribbon, the energy barrier can be accurately regulated, which is a promising advantage for graphene-
based electronic devices. Graphene can also be used in the partial detection of external magnetic fields,

electric fields, and deformations due to it being a low-noise electrical substance [24].

In terms of its structure, graphene can be considered the basic unit of graphite, fullerene [25], carbon
nanotube [20], graphyne [27], and other related materials such as amorphous carbon, carbon fiber, charcoal
[28], as well as aromatic molecules such as polycyclic aromatic hydrocarbons. As they all have the same
structure, they all have some properties in common, even though their different sizes and shapes make
them very different. Thus, the structural study of graphene helps understand the above listed materials. The
f-Graphene consists V(I') = 12mn + 2m + 10n and E(I") = 18mn + m + 11n. It is depicted in
Figure 1.

Figure 1:-Graphene (7,7)
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Table 2:Partition table for S-Graphene

Edge types Frequency
dss 4m+ 2n
ds; 4m+8
dsg 4m+4n—8
do 2m+ 4
dgg 2n—2
dgo 8m + 4n — 12
dgg 18mn —21m —n+ 10

Theorem 1. If I is a B-Graphene system, then NM-polynomial of I is given as follows

NM(T;7r,t) = (4m + 2n)r°t5 + (4m + 8)r°t” + (dm + 4n — 8)r°t® + Cm + 4)r’t° + 2n —
2)r8t8 + (8m + 4n — 12)r8t° + (18mn — 21m — n + 10)r°t°.

Theorem 2. If I is a B-Graphene system, then NM-polynomial of I is given as follows

1. NMM,(I') = 324mn — 70m + 154n,
2. NMM,(I") = 1458mn — 599m + 545n + 30,
m _ (2437 16489 2 1597
3. NMMZHT) = (9450) m+ (64800) n+ (9) mn + 90720’
4, NMR,(I') = 259(4m + 2n) + 35¢%(4m + 8) + 40¥(4m + 4n — 8) + 63?(2m + 4) +
649 (2n — 2) + 722(8m + 4n — 12) + 819 (18mn — 21m — n + 10),
5. NMRR,(I') = 1/25% (4m + 2n) + 1/35?(4m + 8) + 1/40% (4m + 4n — 8) +
1/63%(2m + 4) + 1/64%(2n — 2) + 1/72%(8m + 4n — 12) + 1/81? (18mn — 21m — n + 10),
151 1033 503

6. NMSDD(T) = (E) m+ (?) n+ 36mn— =

12463 64637 413
7. NMH(F) y (13260) e (39780) n+ 7956 + 2mn,

16685 99547 1709
8. NMI(T) = ( 442 )n H81mn — (5304) 2652’

176959019139103 4782969 798535392483 11934914516533
. NMA(I) = ( 233744896000 ) ( 2048 ) N ( 681472000 ) 116872448000 ’

10, NMABC() = (32)v2m + (£)van + () Vav7m + (£)vav7 + (3) VITv2Vsm +
() VTTVZBn — (2)VTTVEVS + (5)VZ + (5) V2V -+ (2) VEVBVEm + (1/3)VBN3n —
V5vV3V2 + 8mn — (23—8)m — (i)n +%,

9
1. NMGA(I) = 3n+ (2)V7VEm + (5) V7V5 + (52) V2Vom + (33) V2V5n — (2) V2V5 +
G) VTm + (g)\ﬁ+ 8 + (%) VZm + (%) VZn — (%)\/i +18mn — 17m,

12, NMB,(I') = 900mn — 214m + 418n,
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13.  NMB,(I'") = 5184mn — 2188m + 1912n + 84,
14,  NMHB,(I') = 746496mn — 473476m + 188680n + 4801.

Proof. Let f(r,t) = NM(T;7,t) = (4m + 2n)r>t® + (4m + 8)r°t” + (4m + 4n — 8)r>t® +
Cm+Dr’t? + 2n—2)rét® + 8m + 4n — 12)r8t° + (18mn — 21m — n + 10)r°t°

D, (f(r,©)) = 5(4m + 2n)r°t> + 5(4m + 8)r5t” + 5(4m + 4n — 8)r°t® + 72m + H)r’ ¢ +
8(2n — 2)r8t8 + 8(8m + 4n — 12)r%t°% + 9(18mn — 21m — n + 10)r°t°,

D(f(r,©)) = 5(4m + 2n)r5t° + 7(4m + 8)r°t” + 8(4m + 4n — 8)r°t® + 9(2m + 4)r’t? +
8(2n — 2)r8t8 + 8(8m + 4n — 12)r8t° + 9(18mn — 21m — n + 10)r°t°,

D, + D(f(r,©)) = 10(4m + 2n)r>¢> + 12(4m + 8)r5t” + 13(4m + 4n — 8)r°¢® + 16(2m +
Dr7t? +16(2n — 2)r8t® + 17(8m + 4n — 12)r8t° + 18(18mn — 21m — n + 10)r°t?,
D,D(f(r,t)) = 25(4m + 2n)r5t5 + 35(4m + 8)r°t” + 40(4m + 4n — 8)r°t® + 63(2m +
Ar7t? + 642n — 2)r8t® + 72(8m + 4n — 12)r8t° + 81(18mn — 21m — n + 10)r°t?,

S (f(r,0) = %(4m + 20)r5t5 + % (4m + 8)r5t7 +%(4m +4n = 8)rSt® + 2 (2m + 4)r7t° +

%(Zn — 2)r8¢8 +§(8m +4n — 12)r8t° +%(18mn —21m —n+ 10)r°t?,

S(f(r,0) = §(4m +2n)r3t> + % (4m + 8)r>t” +%(4m +4n — 8)r5t8 +%(2m +r7t? +

%(Zn — 2)r8t® + 2 (8m + 4n — 12)r°t° +%(18mn —21m —n+ 10)r°t°,

1 1 1 1
S:S(f(r,0) = - (4m+ 2n)rotS + = @m+ 8)rot” + 2o (4m +4n — 8)r>td + = (@m+
A)r70 + 614 (2n = 2)r8e® + — (8m + 4n — 12)r°t° + 8—11 (18mn — 21m — n + 10)r°¢°,
DYDY (f(r, 1)) = 25%(4m + 2n)r5t5 + 352 (4m + 8)r°t’ + 409 (4m + 4n — 8)r5t® +

6392(2m + )r’t? + 6492 (2n — 2)r8t® + 729(8m + 4n — 12)r8t° + 819 (18mn — 21m —n +
10)7°t?,

SPSY(f(r,0) = 25%,,(ztm + 2n)r5t5 + 35%) (4m + 8)r5t7 + 40%) (4m + 4n — 8)r5t8 + 63%, (2m +
Hr7ed + 64%, (2n — 2)r8¢8 + 72%0 (8m + 4n — 12)r8¢° + 81L«,(wmn —21m—n+ 10)r°t?,
SeDr(f(r ) = 1(4m + 2n)r5t + 2 (4m + 8)r5t7 + = (4m + 4n — 8)r5t® + 2 (2m + 417t +
1(2n — 2)r8¢8 + § (8m + 4n — 12)r8t% + 1(18mn — 21m — n + 10)rt°,

SD(f(r,0)) = 1(4m + 2n)r5¢5 + g (4m + 8)r5t7 +§(4m + 4n — 8)r5¢8 +§(2m + A7t +
1(2n — 2)r8¢8 + g (8m + 4n — 12)r8t% + 1(18mn — 21m — n + 10)rt°,

J(f(r,0) = f(r,r) = (4m+2n)r'® + (4m + 8)r'2 + (4m + 4n — 8)r'3 + 2m + 4)r'® +
Cn—-2)r%+ (Bm+4n—12)r'7 +9(18mn — 21m — n + 10)r8,
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S Jf(r,t) = % (4m+ 2n)rt® + % (4m + 8)rt? + % (4m+4n —8)r'3 + 1—16 2m+4rté +

—(2n— 2)r16 + = (8m + 4n — 12)r7 + — (18mn — 21m — n + 10)r',
S,.JD,D.f(r,t) = %(Mn +2n)rl0 + %(4m +8)ri2 + ‘1*—2(4m +4n —8)r!3 + E(Zm + 4)r16 +
f—:(Zn —2)ri6 z—i(Bm +4n—12)rl7 + % (18mn — 21m — n + 10)r8,
3 3 3
Q_,JD3D3f(r,t) = (285) (4m + 2n)r® + (g) (4m + 8)r10 + (%) (4m + 4n — 8)r!t +

@) @m+ 0+ (2) 2n— 2r1 + (2 (8m + 4n — 12015 + (22)” (18mn — 20m - n +
10)rte,

1 1 1
D2Q_o] $752£(r,t) =2 (4m + 2n)r® + 322 (4m + 8)r10 + Y2 (4m + 4n — Bt + L2 (2m +
4Hrit + C( 2t + = (8m +4n —12)r'5 + T V16 (18mn — 21m — n + 10)r1S,
1 1

25, JDZD2f(r,t)

10 2v35 2v40
=— (4m + 2n)ri® + 5 (4m + 8)r? + 13\ (4m + 4n — 8)r'3
2\/6 16 2V72 18
— (2 DHr1e + —2n —2)rte + —— An—12)rY7 +—(1
+ 16 2m+4)r 16(n e+ 17 (8Bm + 4n )r +18( 8mn

—2lm—n+10)r!8

2D,.Q_,Jf(r,t) =2-8(4m+2n)r®+2-10(4m+8)rt® + 2-11(4m + 4n—8)r1t + 2
-1402m+ )r'** +2-14Q2n - 2)r** +2-15(8m + 4n — 12)r'> + 2 - 16(18mn
—21m—n+ 10)rte

D,Q_,J(D, + D)f(r,t) =8-10(4m+2n)r® + 10-12(4m + 8)r'® + 11-13(4m + 4n —
8)ril +14-16(2m+ 4)r** + 14-16(2n — 2)r'* + 15-17(8m + 4n — 12)r'> + 16 -
18(18mn — 21m —n + 10)r1®

D2Q_,J(DZ + D3 f(r,t) = 64 -50(4m + 2n)r® + 100 - 74(4m + 8)r1° + 121-89(4m + 4n —
8)r1l +196-130(2m + 4)r** + 196 - 128(2n — 2)r'* + 225- 145(8m + 4n — 12)r'> + 256 -
162(18mn — 21m — n + 10)re.

The above results are obtained by using the conditions of M-Polynomial with its derivatives, and the

partition Table 2.

Hence the proof.
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24 Neighbourhood Degree Sum-Based Entropy Measures for p-Graphene

Theorem 3. If I' is a 3-Graphene system, then NM-entropy measures ofl"are given as follows

1. NENTyy, (I') =log log (324mn — 70m + 154n) — 324mn_710m+154n [(4m + 2n)(10)

log log (10) + (4m + 8)(12) log log (12) + (4m + 4n — 8)(13) log log (13) + (2m + 4)(16)
log log (16) + (2n —2)(16) log log (16) + (8m + 4n —12)(17) log log (17) + (18mn —
21m —n +10)(18) log log (18) ]

—273.7788m + 408.7804n + 2.8232 + 936.4896mn)

= log(324mn — 70m + 154n) — ( 324mn — 70m + 154n

2. NENTypy,(I') =log log (1458mn — 599m + 545n + 30) — 1458mn_59;m+545n+30 [(4m +

2n)(25) log log (25) + (4m + 8)(35) log log (35) + (4m + 4n — 8)(40) log log (40) +
(2m +4)(63) log log (63) + (2n — 2)(64) log log (64) + (Bm + 4n —12)(72)
log log (72) + (18mn — 21m —n + 10)(81) log log (81) ]

= log(1458mn — 599m + 545n + 30)
(—3079.6186m +2159.2464n + 191.1532 + 6407.0352mn)
1458mn — 599m + 545n + 30

NN () tog o () () e (mn 32 -

(%)m+(222§§n+(g)mn+910579270 [(4m + 2n) (25) log (25) + (4m + 8) (35) log ( ) +(4m+4n —

8) ( )log ( ) +(2m+4) (63) log (63) + (2n—2) (64) log( ) + (8Bm +4n —
12) (72) log ( ) + (18mn — 21m — n + 10) (81) log (81)]

g <2437) +(16489) +(2) , 1597
— %91\ \9250)™ " 62800/ " \9) ™ T 90720

—.7576449840m — .9397022176n — 0.376835284e — 1 —.9765333333mn

2437 16489 2 1597
(9450)’” + (64800) n+ (9) "+ 50720
4., NENTyuu () =log log (5832mn — 2328m + 2220n + 84) —

1
ey [(4m + 2n)(100) log log (100) + (4m + 8)(144) log log (144) +

(4m 4+ 4n —8)(169) log log (169) + (2m + 4)(256) log log (256) + (2n — 2)(256)
log log (256) + (8Bm + 4n — 12)(289) log log (289) + (18mn — 21m —n + 10)(324)
log log (324) ]
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= log(5832mn — 2328m + 2220n + 84)
(—15220.274—4m + 11905.3064n + 707.5792 + 33713.6256mn)
5832mn — 2328m + 2220n + 84

5. NENTNA(I-) =log lOg ((4782969) _ (798535392483) (176959019139103) +

2048 681472000 233744896000
11934914516533 1

116872448000 ) - (4782969) _(7985353924—83) (176959019139103) 11934914516533 [(4m + zn) ( )
2048 681472000 233744896000 ' 116872448000

log log (%)3 + (4m + 8) (%)3 log log (i—i) + (4m + 4n — 8) (ﬁ) log log (g) + (2m+
4) (2)3 log log (%)3 +(2n-2) (%)3 log log (%)3 + (8m+4n—12) (1—2)3

log log (2)3 + (18mn — 21m —n + 10) (3—2)3 log log (?—2)3 ]

_ (4782969) (798535392483) (176959019139103) 11934914516533
i 2048 681472000 233744896000 116872448000

—6658.292895m + 2328.656416n + 829.875339 + 9964.129511mn

_(4782969) _(798535392483) (176959019139103) 11934914516533
2048 )Mn 681472000 /™ 233744896000 /" T T116872448000

6. NENTy 45c(I') =log log (ABC(I')) —ABC(F) [(4m + 2n) (\E) log log (\g) + (4m +
8)<\E—:>loglog (\/g) +(4m+4n—8)<\/%>loglog <\/1—E> +(2m+4)<\%>

log log <\/g> +(2n—2)<\/g>loglog <\[2—E> +(8m+4n—12)<\/%)loglog <\/%> +
(18mn — 21m — n + 10) (\/;—E) log log (ﬁ:‘i) ]

7. NENTyga(I') =log log (NGA(T')) —

NGA(r) [(4’” +2n)(1) log log (1) + (4m +

8) (@) log log (2\/_) + (4m+4n—8)( )log log (N_) + (2m +4)( )
log log ( \/_) +(2n—-2)(1) loglog (1) + (8Bm +4n —12) ( ) og log (2\/_) + (18mn —
2Im —n+10)(1) log log (1)]

8. NENTy4,(I') =log log (AG,(I")) —

G (F) [(4m +2n)(1) log log (1) + (4m +

8) (2\/_) log log (2\/_) + (4m + 4n —8) (2\/_) log log (2\/_) + (2m+4) (N_)
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log log (2\/_) + (2n—-2)(1) loglog (1) + (8m +4n —12) (2\/_) log log (ZJ_) + (18mn —
2Im —n+10)(1) log log (1)]

9. NENTyg, (I') =log log (2916mn — 1130m + 1130n + 24) —
! [(4m + 2n)(50) log log (50) + (4m + 8)(74) log log (74) + (4m +

2916mn—1130m+1130n+24
4n — 8)(89) log log (89) + (2m + 4)(130) log log (130) + (2n —2)(128) log log (128) +
(8m +4n —12)(145) log log (145) + (18mn —21m —n + 10)(162) log log (162) ]

= log(2916mn — 1130m + 1130n + 24)
(—6615.1380m + 5293.5484n + 223.5860 + 14835.4416mn>
2916mn — 1130m + 1130n + 24

10.  NENTys, (I') =log log (118098mn — 74571m + 30017n + 8086) —

1
118098mn—74571m+30017n+8086 [(4m + Zn)(625) lOg lOg (625) + (4m + 8)(1225)

log log (1225) + (4m + 4n — 8)(1600) log log (1600) + (2m + 4)(3969) log log (3969) +
(2n —2)(4096) log log (4096) + (8Bm + 4n —12)(5184) log log (5184) + (18mn — 21m —
n + 10)(6561) log log (6561) |

= log(118098mn — 74571m + 30017n + 8086)
—6.922733326 X 10°m + 2.431043232 X 10°n + 83203.5944 + 1.037939702 X 10°mn
118098mn — 74571m + 30017n + 8086

11. NENTy,(I') =log log (Nx(I')) — S (r) [(4m + 2n)( ) log log (\/_) + (@m+

8)( )loglog(\/_)+(4m+4n 8)( )loglog(r)+(2m+4)( )loglog(r)+
(2n — 2)( )loglog(r)+(8m+4n—12)( )loglog(\/_)+(18mn—21m n+

10 () 0905 ()|

274

12. NENTygezr,(I') =log log ((%)m + (g)n + (53156)m ) —
1

e (e [(4m + 2n) ( ) log log ( ) + (4m + 8) (

35 35

8)( )loglog( )+(2m+4)( )loglog( )+(2n—2)(§
12)( )loglog( )+(18mn—21m n+10)( )loglog (—1)]

loglog( )+(4m+4n—

log log (g) + (8Bm + 4n —
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- (2 () (20

—.798715906m — 3.916313112n + 0.34553969¢ — 1 — 6.016399999mn

(3)m+ (55)n-+ (552) mn

1
(G nt121mn=(35)m

Zn)( )loglog( )+(4m+8)( )loglog( )+(4m+4n—8)( )loglog( )+
(2m+4)( )loglog( )+(2n—2)( )loglog( )+(8m+4n—12)( )
loglog( )+(18mn 21m — n+10)( )loglog( )]

_1 (1309) +121 (451)
=lIn 18 n mn 18 m
—46.95207065m + 47.19060362n + 2.12647952 + 121.8321000mn

(%)n + 121mn — (%)m

13. NENTygezc,(I') =log log (( )n + 121mn — (41581) m) — [(4m +

14. NENTygez6,(I') =log log (26244mn — 14050m + 8066n + 1076) —
! [(4m + 2n)(250) log log (250) + (4m + 8)(420) log log (420) +

26244mn—14050m+8066n+1076
(4m + 4n — 8)(520) log log (520) + (2m + 4)(1008) log log (1008) + (2n — 2)(1024)
log log (1024) + (8m + 4n — 12)(1224) log log (1224) + (18mn — 21m —n + 10)(1458)
log log (1458) |

= log(26244mn — 14050m + 8066n + 1076)
—1.108067064 x 10°m + 54153.1980n + 9750.1632 + 1.911822912 x 10°mn
26244mn — 14050m + 8066n + 1076

Where NABC(I'), NMGA(I'), NAG, (I") and Ny(I') can be represented as NABC(I') = (%) VZm +
(2)van + (3)Vavim + (2)V2v7 + (3) VZV5vTIm + () V2V5yTin — (2) V2V5VIT +
(5)vZ+ (5)V2V7n+ (3) V2V5v3m + (5) V2V5v3n — sV2V5V3 + 8mn — () m — () n + 5
NMGA(I) = 18mn — 17m + 3n + (2) V7V5m + (3) V7V5 + (1) V2V5m + (1) V2V5n —
(Z)vavs + (3)vim + 3)V7 + 8+ (2)vam + () V2 n - (22) VZNMAG, = 18mn —
17m + 3n + () V7VEm + (52)VIV5 + (4) V2V5m + () VZvEn — (S) VZV5 + (55) V7m +
E)V7+8+(D)Vam+(T)Vzn— (2)vZ  and  NMx(r) = (3)v2vEm + (5) V2V5n +
(5)V3m + (5) V3 + () VI3m+ (55) VT3n = () VI3 + (5)m+ 3+ () n+ () vITm +
() VT7n = (Z)VI7 + 332mn = () ¥2m - (5) Van + (5) V2

17
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25 Comparative analysis for g-Graphene

In this section, the analytical expressions of the neighbourhood degree sum-based indices derived in
Theorem 2 and Theorem 3 are represented as 3D plots. These plots help the reader visually interpret and
understand the behaviour of the indices with respect to the variables that define the molecular structure. In
addition, the results of Theorem 2 have also been represented as comparison plots where all the
neighbourhood degree sum-based indices are plotted in the same graph against the same structural
variables. These comparison plots provide a graphical representation of how the indices vary with respect

to each other and the molecular structure. These plots are presented in Figure 2 and Figure 3.
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Figure 2:3D plots for Theorem 2
Table 3:Comparison Table for Theorem 2.
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m=n | NMM,(I') | NMM,(I') | NMM*(I) | NMR,(I") | NMRR,(I") | NMSDD(I') | NMH(I)
1 408 1434 0.75 202.61 4.65 61.75 4.62
2 1464 5754 1.93 728.58 13.26 196.30 13.18
3 3168 12990 3.55 1578.53 25.88 402.85 25.75
4 5520 23142 5.62 2752.49 42.49 681.40 4231
5 8520 36210 8.13 4250.45 63.10 1032.00 62.88
Table 4:Comparison Table for Theorem 2.
m=n | NMI(I') | NMA(I') | NMABC(I') | NMGA(T') | NMB,(I') | NMB,(I') | NMHB,(I")
1 100.62 2022.83 15.30 29.79 1104 4992 509712
2 362.61 8614.42 46.61 95.48 4008 20268 2464404
3 786.59 | 19876.87 93.91 197.17 8712 45912 5912088
4 1372.57 | 35810.19 157.22 334.86 15216 81924 10852764
5 2120.55 | 56414.37 236.53 508.56 23520 128304 17286432
I NV, (T)
I NMML(T)
I NMML™(T)
NMR ()
I NMRR ()
NMSDD(I)
B NMH(I)
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Figure 3:3D Plots for Table 3.

Figure 4:3D Plots for Table 4.

Table 5:Comparison Table for Theorem 3

m=n NENTMI(F) NENTMZ(F) NENTMZm(r) NENTHM(D NENTA(F) NENTABC(F) NENTGA(F)
1 3.38 3.31 3.32 3.31 4.42 3.40 3.40
2 4.54 4.49 4.46 4.49 5.34 4.56 4.56
3 5.27 5.23 5.18 5.23 6.00 5.28 5.29
4 5.80 5.77 5.72 5.77 6.49 581 5.82
5 6.22 6.20 6.15 6.20 6.89 6.23 6.23

Table 6:Comparison Table for Theorem 3
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rznn NENTyg,, | NENTg,,, | NENTg,,, | NENTy | NENTgezq, | NENTRezg,, | NENTRezc,
1 3.40 3.31 3.08 6.80 3.69 4.39 3.21
2 4.56 4.50 4.35 8.41 4.82 5.52 4.42
3 5.29 5.24 5.13 9.35 5.53 6.22 5.18
4 5.82 5.77 5.70 10.00 6.05 6.74 5.73
5 6.23 6.20 6.13 10.51 6.47 7.16 6.17

Figure 5:3D Plots for Table 5.

I NENTM, ()
I NENTM,(T)
I NENTM,™(T)
[ NENTHM(T)
B NENTA(T)
NENTABC(I")
I NENTGA(T)
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Il NENTAG, ()
I NENTF ()
I NENTF ()
[0 NENTX(I)
I NENTReZG,(I)
Il NENTReZG,(I)
Il NENTReZG,4(I)

Figure 6:3D Plots for Table 6.

3 Conclusion

In this article, the closed form analytical expressions of neighbourhood sum degree-based indices of
graphene have been detived using M-Polynomial. The computed indices are presented as individual 3D
plots and comparison plots for a convenient interpretation of the mathematical expressions. The
neighbourhood sum degree-based entropy measures have also been calculated for the three types of
graphene structures. These indices are also visualised as 3D plots to corroborate the dependence of the
indices on the underlying molecular structure. These indices have not been studied before for these
structures; hence, this study is one of a kind. This study will enable future researchers to explore more

topological indices for these fascinating structures.
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