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ABSTRACT 

In this paper, we introduce and study the concept of a new class of closed sets called 

-closed sets (briefly -closed set) in Bitopological spaces. Also, we investigate some of 

their properties.  
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1 Introduction 

A bitopological space (X, 1, 2) defined to be a set X equipped with two topologies 1, 2 on X introduced 

by JC. Kelly in 1963 and he initiated a systematic study of bitopological space. The study of generalized 

closed sets in a bitopological space was initiated by Levine in [8] and the concept of T1/2 spaces was 

introduced. Various authors have turned attention to the various concepts of topology by considering 

bitopological spaces instead of topological spaces. In 2008, S Jafari, T. Noiri, N. Rajesh and M.L. 

Thivagar [6] introduced the concept of g -̃closed sets and discussed some of their properties. The 

notion of β-open sets and β-continuity introduced by Abd El-Monsef et al. [1] in topological spaces. Further 

continuous β*-open sets in Topological spaces introduced by Mubaraki [9]. 

The purpose of this paper Introduce and study the notions of (i, j)-β*- closed sets and (i, j)-β*-open sets in 

bitopological space and (β*, 1, 2)-graph    by utilizing the notion of (i, j)-β*-closed set. And also, some of 

characterizations and properties of these notions are investigated. 

2 Preliminaries 

Definition 2.1. Let X be a set. B is a subset of a space X. then  

(1) α-open [8] if B  int(cl(int(B))), 

(2)  preopen [5] if B int(cl(B)), 

(3) δ-preopen [9] if B  int(clδ(B)), 

(4) β- open set [1]t if B  cl(int( cl B)) 

(5) b- open set [10] if B  cl(int(B))  int(cl B)) 

(6) regular open [5] if B = int(cl(B)) 
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The complement of a α -open (resp. preopen, δ-preopen, β-open, b-open, regular open) sets is called a α -

closed [4] (resp. preclosed, δ-pre-closed, β-closed, b-closed, regular closed).  

Definition 2.2. Let X be a set. B is a subset of a space (X, i,j). then B is said to be 

(a) (i,j)-pre-open (briefly, ij-p-open)[5] B  i-int (j –cl(B)), 

(b) (i,j)-regular-open (briefly, ij-r-open) [5] B = i -int (i –cl(B)), 

(c) (i,j)-regular-closed (briefly, ij-r-closed )[3] B = j-cl (i –int(B)), 

(d) (i,j)-semi-open (briefly, ij-s-open)[2] B  j -cl  (i –int(B)), 

(e) (i,j)-generalized closed (briefly, ij-g-closed) B U & U ∈ i ⇒ j –cl(B)  U, 

(f) (i,j)-regular generalized closed (briefly, ij-rg-closed) B≤U & U ∈ ij-

RO(X)  

⇒ j –cl(B)≤ U, 

(g) (i,j)- open set if B ≤ i –int (j -cl  (i –int(B))) 

(h) (i,j)-regular weakly closed(briefly, ij-rw-closed) set if B≤U & U ∈ 

ij-RSO(X)  

⇒ j –cl(B)≤ U, 

Naturally, the complement of respective open/closed set is respective closed/open set. 

The class of ij-k-open (resp. ij-k -closed) sets is denoted by the symbol ij-kO(X)( resp. ij-kC(X)) where  k = 

P,R,S,G,RG, , RW  accordingly. 

Lemma 2.3. [1, 9,10]. Let B be a subset of a space (X, τ1, τ2). Then: 

(1) ij-δ-pint(B) = B ∩ τi-int (τj -clδ(B)) and ij-δ-pcl(B)= B ∪ τj-cl(τi -intδ(B)), 

(2) ij-β-int(B) = B ∩ τj -cl (τi -int (τj -cl(B))) and ij-β-cl(B)= B ∪ τi -int(τj -cl(τi -int(B))). 

 

Definition 2.4. [10] Let B be a subset of a space (X, τ1, τ2). Then: 

(a) ij-b-open set if B ≤ τj -pcl (τi –pint(B)), 

(b) ij-b-closed set if τi -pint (τj –pcl(B)) ≤ B or Bc ij-b- open. 

Symbols ij-BO(X) & ij-BC(X) stand for the class of all ij-b-open & ij-b-closed sets respectively. 

Definition 2.5. [10] For any bitopological space (X, τ1, τ2) and B ≤ X, then ij-b-interior and 

ij-b-closure of B are denoted by ij-bint(B) & ij-bcl(B) respectively and 

defined by: 

(a) ij-bint(B) = 𝖴 { F≤ : F∈ ij-BO(X), F≤ B} 

(b) ij-bcl(B) = ∩ { F≤ X : F∈ ij-BC(X), B≤ F} 
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3 On (i, j)-  Closed sets and (i, j)-  Open sets in Bitopological Spaces 

Definition 3.1. For any subset B of a topological space (X, 1, 2) is said to be: 

     (1) a (i, j) β*-closed set i-int (j-cl (i-int (B))) ⊆ U whenever B⊆ U, where U i-  open set 

      (2) a (i, j) β*-open set if the complement of (i, j) β*-closed set is open. 

The family of all (i, j)-β*-closed (resp. (i, j) β*-open) subsets of a space (X, 1, 2) will be as always denoted 

by β*C(X)(resp. β*O(X)). 

Example 3.2.  Let X = {p, q, r, s}, 1 = {X, ɸ, {p},{r}, {p, q}, {p, r}, {p, q, r}, {p, r, s}} and 

2 ={X, ɸ, {p}, {p, q}} .  

Then the (i, j) - β*-closed sets are {X, ɸ, {q}, {r}, {s}, {q, r}, {q, s}, {r, s}, {q, r, s}}. 

Remark 3.3. If 1 = 2 =  in the Definition 3.1., then ( i, j) - β*-closed set is a β*-closed in a topological 

space. 

 

Theorem 3.4. If B is a j -closed subset of (X, 1, 2) then B is ( i, j) - β*-closed set. 

Proof: Let B be a j -closed set in (X, 1, 2). Let G be a i - β -open 

set in (X, 1, 2). Such that B ⊆ G. Then i - int( j - cl(i - int(A))) ⊆ G as B is j -closed 

set. This implies j - cl(B) = B ⊆ G. This implies j - cl(B) ⊆ G.  

Therefore, B is ( i, j) - β*-closed set in (X, 1, 2) . 

The converse of the above theorem need not be true as seen from the following example. 

Example 3.5. Let X = {p, q, r}, 1 = {X, ɸ, {p}, {q}, {p, q}} and   

2= {X, ɸ, {r}, {q, r}, {r, s}, {q, r, s}}.  

( i, j) - β*-closed set : {X, ɸ, {p}, {r}, {s}, {p, q}, {p, r}, {p, s}, {q, r},  {r, s}, {p, q, r}, {p, q, s}, {p, r, s}, 

{q, r, s}} . 

2- closed sets: {X, ɸ, {p}, {p, q}, {p, s}, {p, q, s}} 

The subset {p, r} is (i, j) - β*-closed set but not 2- closed set in the bitopological space (X, 1, 2). 

 

Theorem 3.6.  Every (i, j) - β*-closed set is ( i, j)-g-closed. 

Proof. Let B be any (i, j) - β*-closed set in X. Let B ⊆ U and U be β -open in X. Every open set is g-open 

and thus B is (i, j) - β*-closed set. Therefore 2 -cl(B) ⊆ U. Hence B is ( i, j)-g-closed. 

The converse of the above theorem need not be true as it is seen from the following example. 
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Example 3.7. Let X = {p, q, r, s}, 1 = {X, ɸ, {p}, {q}, {p, q}} and   

2= {X, ɸ, {r}, {q, r}, {r, s}, {q, r, s}}.  

( i, j) - β*-closed set : {X, ɸ, {p}, {r}, {s}, {p, q}, {p, r}, {p, s}, {q, r},  {r, s}, {p, q, r}, {p, q, s}, {p, r, s}, 

{q, r, s}} . 

Then the set B = {q} is ( i, j)-g-closed but not (i, j) - β*-closed set in (X, 1, 2). 

 

Theorem 3.8. Every (i, j) - β*-closed set is ( i, j)- -closed. 

Proof. Let B be any (i, j) - β*-closed set. Let B ⊆ U and U be j - β-open.  

Observe that every j - β-open set is open and every open set is 1- regular semi open and therefore B is (

i, j)- -closed. It follows that 2- cl(B) ⊆ U.  

Hence B is ( i, j)-rw-closed. 

Remark 2.1. The following diagram holds for each a subset B of X.  

 

 

           j- -closed 

 

 j- closed              ( i, j)- - closed 

 ( i, j)- pre-closed                     ( i, j)- - closed 

 ( i, j)- - closed  ( i, j)- - closed ( i, j)- - closed        ( i, j)- - 

closed 

 

None of these Implication is reversible. 

4 Some Properties of (i, j)-  Closed sets and (i, j)-  open sets in Bitopological 

Spaces  

Theorem 4.1. Let (X, 1, 2) be a Bitopological spaces. Then the following are hold. 

(1) The arbitrary union of (i, j)- β*-open sets is (i, j)- β*-open, 

(2) The arbitrary intersection of (i, j)-β*-closed sets is (i, j)- β*-closed. 

Proof.  

(1) Let {Bi, i ∈ I} be a family of (i, j)-β*-opensets. Then Bi⊆ j -cl( i -int( j -cl(Bi))) ∪ j -int( j -clδ 

( i, j) - β*-closed 
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(Bi)) and hence ∪i Bi⊆ ∪i ( j- cl( i -int( j -cl(Bi))) ∪ i -int( j -clδ(Bi))) ⊆ j- cl( i- int( j –cl 

(∪iBi))) ∪ i –int ( j- clδ(∪i Bi)), for all i ∈ I. Thus ∪i Bi is (i, j)- β*-open, 

(2) It follows from (1). 

Remark 4.2. By the following example we show that the intersection of any two β*-open sets is not β*-

open. 

Example 4.3. Let X = {p, q, r, s}, 1 = {X, ɸ, {p}, {q}, {p, q}} and   

2= {X, ɸ, {r}, {q, r}, {r, s}, {q, r, s}}.  

(i, j) - β*-closed set: {X, ɸ, {p}, {r}, {s}, {p, q}, {p, r}, {p, s}, {q, r}, {r, s}, {p, q, r}, {p, q, s}, {p, r, s}, 

{q, r, s}}. 

(i, j) - β*-open set: {X, ɸ, {p}, {q}, {r}, {s}, {p, q}, {p, s}, {q, r}, {q, s}, {r, s}, {p, q, r}, {p, r, s}, {q, r, 

s}. 

Then A = {p, q, r} and B = {p, r, s} are (i, j)- β*-open sets. But, A ∩ B = {p, r} is not (i, j)-β*-open. 

Definition 4.4. Let (X, 1, 2) be a bitopological space. B is subset of X, then: 

(a) (i, j)- β*-int(B) = 𝖴 {F ≤ X: F∈ ij-BO(X), F≤ B} 

(b) (i, j)- β*-cl(B) = ∩ {F≤ X: F∈ ij-BC(X), B≤ F} 

Theorem 4.5. Let A, B be two subsets of a bitopological space (X, 1, 2). Then the following are hold: 

(1) 2-β*-cl(X) = X and 2- β*-cl(φ) = φ, 

(2) A ⊆ 2-β*-cl(A), 

(3) If A ⊆ B, then 2-β*-cl(A) ⊆ 2-β*-cl(B), 

(4) x ∈ 2-β*-cl(A) if and only if for each a 1-β*-open set U containing x, U ∩ A  φ, 

(5) A is (i, j)-β*-closed set if and only if A = 2-β*-cl(A), 

(6) 2-β*-cl (2 -β*-cl(A)) =2 - β*-cl(A), 

(7) 2 -β*-cl(A) ∪2 - β*-cl(B) ⊆ 2 -β*-cl (A ∪ B), 

(8) 2-β*-cl (A ∩ B) ⊆ 2 -β*-cl(A) ∩ 2 -β*-cl(B). 

Proof. (1) Trivial case. That is cl(X)= X and Cl(φ)= φ =>2-β*-cl(X) = X and 2- β*-cl(φ) = φ 

(2) By known result int A  A  cl(A) => A ⊆ 2-β*-cl(A) 

(3) By (2) A ⊆ 2-β*-cl(A) and B ⊆ 2-β*-cl(B). Given A ⊆ B => 2-β*-cl(A) ⊆ 2-β*-cl(B) 

(4) x ∈ 2-β*-cl(A) if and only if for each a 1-β*-open set U containing x, U ∩ A  φ, 

To prove that contra positive. If x  2-β*-cl(A) <=> there exist an open set containing x does not 

intersect A. 
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=> If x  2-β*-cl(A) then the set U= X - 2-β*-cl(A) is an open set containing x does not intersect A. 

<= If there exist an open set containing x does not intersect A. Then X- U is a closed set containing A. 

By the definition of β*-closure, the set X-U must contain A. Therefore x  2-β*-cl(A) 

(5)  A is (i, j)-β*-closed set if and only if A = 2-β*-cl(A). 

      We know that, A is open => A= int (A) and A is closed then A = Cl(A) in topological spaces. 

⇨ A is (i, j)-β*-closed set   A = 2-β*-cl(A) 

(6) By using (2) and A ⊆ 2-β*-cl(A), we have 2- β*-cl(A) ⊆2- β*-cl(2-β*-cl(A)). Let x ∈2- β*-cl(2-

β*-cl(A)). Then, for every 1-β*-open set V containing x, V ∩ 2-β*-cl(A)  φ. 

Let y ∈ V ∩ 2-β*-cl(A). Then, for every 1-β*-open set G containing y, A ∩ G  φ. Since V is a 1-β*-

open set, y ∈ V and A ∩ V φ, then x ∈ 2-β*-cl(A).  

Therefore, 2-β*-cl(2-β*-cl(A)) ⊆ 2-β*-cl(A).   

 

Theorem 4.6. Let A, B be two subsets of a bitopological space (X, 1, 2). Then the following are hold: 

(1) 1 -β*-int(X) = X and 1 -β*-int(φ) = φ, 

(2) 1 -β*-int(A) ⊆ A, 

(3) If A ⊆ B, then 1 -β*-int(A) ⊆ 1 -β*-int(B), 

(4) x ∈ 1 -β*-int(A) if and only if there exist 1 -β*-open W such that x ∈ W ⊆ A, 

(5) A is  -β*-open set if and only if A = 1 -β*-int(A), 

(6) 1 -β*- 1 -int ( 1 -β*-int(A)) = 1 -β*-int(A), 

(7) 1 -β*-int (A ∩ B) ⊆ 1 -β*-int(A) ∩ 1 - β*-int(B), 

(8) 1 -β*-int(A) ∪ 1 -β*-int(B) ⊆ 1 -β*-int (A ∪ B). 

Proof: By using above theorem, it is obvious. 

Theorem 4.7. for an  -β*-closed and i-open set A in a bitopological space (X, 1, 2), 

the set B ≤ A is  -β*-closed relative to A If B is  -β*-closed in X. 

Proof: Since, A is both  -β*-closed and i -open set in a bitopological space, hence, (i, j)- 

β*cl(A) ≤ A. Also, B ≤ A provides that (i, j)- β*cl(B) ≤ (i, j)- β*cl(A). Combining these facts, we have (i, j)- 

β*cl(B) ≤ (i, j)- β*cl(A) ≤ A. 

Now, A ∩ (i, j)- β*cl(B) = (i, j)- β*clA(B). Using it, we get (i, j)- β*clA(B) = (i, j)- β*cl(B) ≤ A.  
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If B is (i, j)- β-closed relative to A and U is i -open set in X such that B ≤ U, then B = 

B∩A ≤ U ∩A where U∩A is i A-open (or i-open in A).  

Hence as B is ij-gb-closed relative to A, (i, j)- β*-cl(B) = (i, j)- β*clA(B) ≤ 

U ∩ A ≤ U. Consequently, B is (i, j)- β*closed in X. 

Conversely, if B is (i, j)- β*-closed in X and U is an i -open subset of A such that B≤ U, 

then U = V∩A for some i -open subset V of x. As B≤ V and B is (i, j)- β*-

closed set in X, (i, j)- β*cl(B) ≤ V. Thus, (i, j)- β*clA(B) = (i, j)- β*cl(B) ∩ A ≤ V∩ A = 

U. Consequently, B is (i, j)- β*-closed relative to A. 

Corollary 4.8. If A is an (i, j)- β*-closed & i -open set in a bitopological space (X, 1, 2) then A 

∩ F is also (i, j)- β*-closed whenever F ∈ (i, j)- β*C(X). 

Proof: Let A be (i, j)- β*-closed & i -open set in a bitopological   space (X, 1, 2). For A to be (i, j)- 

β*-closed as well as i –open, it is natural that (i, j)- β*cl(A) ≤ A. So, A is (i, j)- β*closed. 

Again, as F ∈ (i, j)- β*C(X) & A ∈ (i, j)- β*C(X) so A∩ F ∈ (i, j)- β*C(X). Now, A∩ F   ≤ A   j- β*cl (A∩ F) 

≤ A which means that A ∩ F is (i, j)- β*-closed. 

Theorem 4.9. If A is an (i, j)- β*-closed set and B is any set such that A ≤ B≤ (i, j)- βcl(A), then B is also 

an (i, j)- β*-closed set. 

Proof: Let B ≤ U where U is i -open in (X, 1, 2). Since, A is (i, j)- β*-closed and A ≤ U, then 

(i, j)- βcl(A) ≤U. 

Again, A ≤B≤ (i, j)- βcl(A)  (i, j)- βcl(A) = (i, j)- βcl(B). Therefore, combining these facts, we 

conclude that (i, j)- βcl(B) ≤U whenever B ≤ U & U is i -open. So, B is also an (i, j)- β*-closed set. 
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