

Radiobiological Model-Based Plan Evaluation for Patients Undergoing Radiotherapy Treatment

Ganeshkumar Ramesh Patel

Series: AIJR Thesis

More information about this series at -

https://books.aijr.org/index.php/press/catalog/series/thesis

Radiobiological Model-Based Plan Evaluation for Patients Undergoing Radiotherapy Treatment

by

Ganeshkumar Ramesh Patel

Department of Radiotherapy and Radiation Medicine Institute of Medical Sciences Banaras Hindu University (BHU), Varanasi

Published by

AIJR Publisher, Dhaurahra, Balrampur, India 271604

Radiobiological Model-Based Plan Evaluation for Patients Undergoing Radiotherapy Treatment

Author

Ganeshkumar Ramesh Patel Department of Radiotherapy and Radiation Medicine Institute of Medical Sciences Banaras Hindu University (BHU), Varanasi, India

About this Monograph

This monograph is a part of the dissertation submitted for the award of the degree of Doctor of Philosophy (Ph.D.), in the Department of Radiotherapy and Radiation Medicine, Institute of Medical Sciences, Banaras Hindu University (BHU), Varanasi, on the 30 August 2022 under the guidance of following supervisor-

Dr. Abhijit Mandal Professor Dept. of Radiotherapy and Radiation Medicine Institute of Medical Sciences BHU, Varanasi UP-221005

ISBN: 978-81-970666-3-4 DOI: https://doi.org/10.21467/thesis.172

Series AIJR Thesis

Published 20 December 2024

Number of Pages 108

Imprint AIJR Books

© 2024 Copyright held by the author(s) of the book. Abstracting is permitted with credit to the source. This is an open access book under Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license, which permits any non-commercial use, distribution, adaptation, and reproduction in any medium, as long as the original work is properly cited.

AIJR Publisher, Dhaurahra, Balrampur, India 271604

Synopsis

Radiotherapy treatment becoming essential in the treatment of most of the cancers. It is realised that technology is advancing rapidly which also impacted the advancement of radiotherapy techniques. With new modern techniques evolved with time, complexity as complementary attached to it. Modern techniques demand accuracy, knowledge of additional parameters and new approaches. Keeping in mind present thesis focused on efforts that how the radiotherapy treatment can be improved for the benefit of patients. Radiobiological models started to appear in 1980s since then it is continuously evolving. Medical physicist community is now understanding the importance of radiobiological models and many vendors started to incorporate radiobiological models with their treatment planning system. Still, most of the Medical physicist of the community hesitate to use radiobiological models because of uncertainty and complexity. Therefore, radiobiological models remained the topic of research. But with the efforts of researchers plenty of data have been produced with respect to biological models which is strengthening the reliability of these models. This work is motivated from the discussion during plan evaluation when one of the organ at risk (spinal cord) received dose beyond tolerance limit and it was impossible to achieve. The discussion moved from physical parameter based assessment to basic radiobiology of specific tissue of interest. It gives a kick, to study radiobiological models to handle complex scenarios during plan evaluation. Presently number of radiation oncologists are practicing altered fractionation depends on many clinical trials, changes in fractionation regimen drastically changes the treatment outcome. Therefore, if it is possible to understand the probability of outcome before it appears, it can lead in improvisation of treatment. There are number of biological models exist in literature and varies in terms of biological parameters. It is needed to choose appropriate biological model for better outcome and its validation before implementing in routine clinical practice. Present thesis work tried to answer doubts of radiobiological models and intended to bring in general practice.

AIJR Thesis

Table of Contents

	Contents	Page No.
	Synopsis	i
	About the Author	V
	Acronyms and Abbreviations	vi
	Acknowledgment	vii
Chapter 1	Radiobiology of Radiotherapy	
	1.1. Background	1
	1.2. External Beam Radiation Therapy (EBRT)	1
	1.3. Definition of contouring volumes before planning	2
	1.4. Types of treatment techniques in EBRT	3
	1.5. Plan evaluation	4
	1.6. Dose volume histogram (DVH)	4
	1.7. Basic radiobiology	5
	1.8. Radiobiological models	11
	2. Review of Literature	16
	3. Aims & Objectives	19
	4. Conclusion	20
	References	20
Chapter 2	Role of Plan Evaluation Indices, Chronological Developmer	nt
•	and Dosimetrical Comparison	
	1. Background	22
	1.1. Conformity index	22
	1.2. Homogeneity index	25
	2. Material and Methods	27
	2.1 Plan comparison criteria	30
	3. Result	30
	4. Discussion	34
	5. Conclusion	35
	References	36
Chapter 3	Development of an Indigenous Radiobiological Model Base	d
	TCP and NTCP Estimation Software for Routine Plan	
	Evaluation in Clinics	
	1. Background	38
	2. Material and Methods	39
	3. Radiobiological models	39
	3.1. Niemierko EUD or Logit model	39
	3.2. Lyman-Kutcher-Burman model	40
	3.3. TCP model based on Poisson statistics	41
	3.4. Weibull distribution model	41
	3.5. Logistic Model	41

	4. Application Architecture	42		
	5. Results	45		
	6. Discussion	50		
	7. Conclusion	51		
	References	52		
Chapter 4	Problem Based Application of Developed Program for TCP & NTCP Estimation			
	1. Background	54		
	1.1. Myth	54		
	1.2. Facts	54		
	1.3. Scope of revision	55		
	2. Material and methods	57		
	3. Results			
	3.1. Possibilities of dose escalation	59		
	3.2. Possibilities of achieving planning gain	60		
	4. Discussion	60		
	5. Conclusion	62		
	References	63		
Chapter 5	Role of Overall Treatment Time in Radiotherapy			
	Management of H&N Cancer			
	1. Background	64		
	2. Material and Methods	65		
	3. Result	68		
	4. Discussion	72		
	5. Conclusion	74		
	References	74		
Chapter 6	Clinical Validation of Radiobiological (RB) Models			
	1. Background			
	1.1. DVH versus RB model based plan evaluation	76		
	1.2. Clinical validation	76		
	2. Material and methods	77		
	2.1. Radiotherapy technique	78		
	2.2. Toxicity grading in organ at risk (OAR)	79		
	2.3. Patient reported QoL evaluation	82		
	3. Result	02		
	3.1. Correlation analysis	83		
	3.2. Curve fitting and parameter estimation	86 ••		
	3.3. RB model accuracy calculation	88		
	4. Discussion	90 02		
	5. Conclusion	92 93		
	References	73		

About the Author

The author, *Ganeshkumar Ramesh Patel* has been working as a Medical Physicist and Radiological Safety Officer in the Department of Radiotherapy at the Institute of Medical Sciences, Banaras Hindu University, since 2019. With approximately ten years of experience in radiotherapy cancer treatment, he holds a Master's degree in Physics from Nagpur University and a Postgraduate Diploma in Radiological Physics from the Bhabha Atomic Research Centre (BARC), Mumbai, which he completed in 2012. He is a certified Radiological Safety Officer accredited by the Atomic Energy Regulatory Board (AERB). The author is a life member of the Association of Medical Physicists of India (AMPI) and the Association of Radiation Oncologists of India (AROI). He has presented research papers at various national and international conferences. In addition to his professional responsibilities, he teaches Radiation Safety and Medical Physics to MD Radiotherapy students and Radiotherapy Technologist students in the department.

Acronyms and Abbreviations

3D 2D 3D-CRT TCP NTCP RB	Three-dimensional Two-dimensional Thri-dimensional Conformal Radiation Therapy Tumor Control Probability Normal Tissue Control Probability Radiobiological
BED	Biologically Effective Dose
CBCT CT CTCAE CI	Cone-Beam Computed Tomography Computed Tomography Common Terminology Criteria for Adverse Events Conformity Index
HI GI IMRT	Homogeneity Index Gradient Index Intensity Modulated Radiation Therapy
DVH	Dose Volume Histogram
LQ LKB DVH	Linear Quadratic Lyman-Kutcher-Burman Dose-Volume Histogram
EORTC	European Organization for Research and Treatment of Cancer
OTT	Overall treatment time
GTV	Gross Tumor Volume
H&N	Head And Neck
ICRU	International Commission on Radiation Units and Measurements
VMAT	Volumetric Modulate Modulated Arc Therapy
QUANTEC	Quantitative Analysis of Normal Tissue Effects in Clinic
MLC OAR TPS EUD RTOG	Multi-leaf Collimator Organs At Risk Treatment Planning System Equivalent Uniform Dose Radiotherapy Oncology Group

Acknowledgment

This achievement is not possible without the motivation and support of many important persons of my life including my teachers, family, friends and colleagues.

I want to start by acknowledging **Professor Abhijit Mandal**, my supervisor in RT&RM dept., my genuine acknowledgment for giving me this great opportunity, for helping make it happen. I will always be grateful to Professor Abhijit Mandal, who believed in me and in my competence. He guided me in tough times and always ready to support me. Thank you for everything, I will never forget you and everything you did for me.

I want to acknowledge **Professor Uday Pratap Shahi**, the former head of department who welcomed me in the department and encouraged me to pursue PhD.

I want to acknowledge **Professor L M Aggarwal**, a jolly personality of the department. I am thankful for his continuous encouragement and support.

I want to acknowledge **Dr Ritusha Mishra**, very kind personality in the department. She supported whenever I approached her for any help.

I am very thankful to **Dr Himanshu Mishra**, a very sincere person in the department, who helped me directly and indirectly in my thesis work.

I would like to thank my colleague **Mr Ankur Mourya** to be a partner of journey of PhD. His presence made me relaxed.

I would like to thank my colleague **Dr Chandra Prakash & Dr Isha Jaiswal** for their direct & indirect support. I am very thankful to **Dr Nilesh Mani**, honest personality and good friend. His support in patient data collection and analysis helped me lot which eased my thesis work. I am also thankful to **Dr Ankita Pandey and Dr Anil Kumar** for their direct and indirect support in my work.

Last but not least, I want to give my acknowledgment to my family for all the support you gave me before and during my journey. None of this would be possible without blessings of my parents and therefore I dedicate my Master Thesis to both of you.

and Statistic Sectors

Radiobiological Model-Based Plan Evaluation for Patients Undergoing Radiotherapy Treatment

To learn more about AIJR Publisher Please visit us at: www.aijr.org

