
 

© 2018 Copyright held by the author(s). Published by AIJR Publisher in Proceedings of First Conference for Engineering 

Sciences and Technology (CEST-2018), September 25-27, 2018, vol. 1. 

This is an open access article under Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) 

license, which permits any non-commercial use, distribution, adaptation, and reproduction in any medium, as long as the 

original work is properly cited. ISBN: 978-81-936820-5-0 

Antenna Elevation Control using Multiple Switched Self-

Tuning Controllers Design 

Ahmed M. Alnajeh 1*, Othman E. Aburas 2 , Youssef  Amer  Arebi 3 

1 Department of Electrical and Computer Engineering, Applied Research and Development 

Center, Tripoli, Libya. 
2Department of Electrical and Computer Engineering, Faculty of Engineering Alkhoms ,  

Elmergib University, Libya. 
3 Department of Electrical and Computer Engineering, Advanced Center of Technology,  

Tripoli, Libya. 

DOI: https://doi.org/10.21467/proceedings.2.26  

* Corresponding author email: aalnajeh@yahoo.com 

 

AB S T R A CT  

Adaptive controllers have a lot of advantages over conventional ones, especially when 

the model of the plant to be controlled is unknown or changes with time. This paper 

proposes a control scheme for multiple adaptive Self-Tuning Pole-Placement controllers 

using both the classical technique via transfer function and the modern technique using 

discrete state-space. This approach enables the user to switch between the classical and 

modern techniques in order to control the estimated plant model on-line; the switching 

mechanism ensures a smooth transition amongst the two pole-placement controllers. 

The performance of the proposed control scheme on the closed-loop performance of 

an antenna system, controlling its elevation, is demonstrated. Simulation results 

demonstrating the effectiveness of the switching mechanism between different 

controllers are presented. A Graphical User Interface is built to facilitate the controller 

programming and allowing the simulation of multiple adaptive controllers. 

Keywords:  Adaptive Self-Tuning Control, Discrete State-Space , Pole-Placement Control , Antenna 

Elevation Control. 

 Introduction 

Control systems design techniques typically require an in-depth understanding of the plant 

under study and its environment. In some applications, however, the plant to be controlled is 

sophisticated and the involved physical processes are changeable with time and operating 

conditions. To deal with such situations, different approaches of adaptive control are 

proposed to tune the controller parameters and behavior in response to the physical processes 

changes [1]. Self-tuning controllers represent an important class of adaptive control since they 

provides systematic and flexible approaches for dealing with many difficulties including time 

varying parameters, non-linearity, and uncertainties. Recently, there has been increasing 

interest in pole-placement self-tuning controllers due to the fact that in the regulator case, they 

provide mechanisms to overcome the restriction to minimum phase plants of some optimal 
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controllers. In the servo case, they give the ability to directly introduce the natural angular 

frequency 𝜔𝑛 and damping ratio 𝜁 as tuning parameters. Moreover, robustness is an essential 

advantage of pole-placement methods, as they simply modify the system dynamics instead of 

cancelling them as applied in optimal self-tuning controller [2]. However, the main drawbacks 

of self-tuning pole-placement controller are based on transfer function approach and also their 

inability to regulate steady-state error in the presence of constant disturbances. The transfer 

function approach depends on polynomial algorithms, which are slow to emerge [3]. In 

contrast, the linear algebraic tools that are required by state-space techniques are a lot more 

advanced and more suitable for optimal control design [1][4]. Therefore, the state-space 

technique is preferred over the transfer function approach, especially for multivariable and 

non-linear systems [5]. The main contribution of this paper is to develop a control scheme for 

multiple adaptive Self-Tuning Pole-Placement controllers using both the classical technique 

via transfer function and the modern technique using discrete state-space framework. In order 

to assess the performance of the proposed scheme, it is applied to single-input-single-output 

of an antenna model. 

 A Servomechanism for an Antenna Elevation Control  

It is desired to control the elevation of an antenna designed to track a geostationary satellite 

as sketched in Figure 1. The antenna and drive parts have a moment of inertia J′ and damping 

Br arising to some extent from bearings and aerodynamic friction, but mostly from the back 

emf (V) of the DC-drive motor [6,7,8]. 

 

Figure 1: Schematic Diagram of Antenna System 
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Figure 2 shows the internal connection of DC-drive motor with the antenna system. Here, the 

armature inductance 𝐿𝑎 (𝐻) is negligible because it is usually small. The continuous transfer 

function [7], [8] can be given by: 

𝜃(𝑠) =
𝑎

𝑠(𝑠+𝑎)
[𝑈(𝑠) + 𝜉′(𝑠)]      (1)  

where 𝜉′(𝑠) is the torque disturbance due to wind, and 𝑈(𝑠) is the torque due to the DC 

motor. 

 
Figure 2: The Connection of DC-drive Motor with the Antenna System 

 

The aim of the design is to measure the error between the angle of the satellite 𝜃𝑠(𝑡) (𝑟𝑎𝑑) 

and the antenna 𝜃(𝑡) (𝑟𝑎𝑑)  and compute 𝑢(𝑡) so that the error 𝑒 , i.e. equals to (𝜃𝑠(𝑡) −

𝜃(𝑡)) (𝑟𝑎𝑑), is always less than 0.001 𝑟𝑎𝑑 during tracking. The geostationary satellite angle 

that must be followed can be adequately approximated by a fixed velocity. 

𝜃𝑠(𝑡) = (0.01𝑟𝑎𝑑/𝑠𝑒𝑐) ×  𝑡(𝑠𝑒𝑐). 

The discrete model of the Antenna system can be written as:  

𝜃(𝑧) =  
(𝑎𝑇𝑠−1+𝑒−𝑎𝑇𝑠)𝑧+(1−𝑒−𝑎𝑇𝑠−𝑎𝑇𝑠𝑒

−𝑎𝑇𝑠)

𝑎(𝑧−1)(𝑧−𝑒−𝑎𝑇𝑠)
[𝑈(𝑧) + 𝜉′(𝑧)]               (2) 

A discrete state-space [9] of antenna tracking control model in which the time constant a =

0.1, and 𝑇𝑠 = 1 sec is: 

[
𝑋1(𝑡 + 1)

𝑋2(𝑡 + 1)
] = [

0 1
−0.9048 1.905

] [
𝑋1(𝑡)

𝑋2(𝑡)
] + [

0.04837
0.13895

] 𝑢(𝑡) + [
0.04837
0.13895

] 𝜉′                (3) 

𝑦(𝑡) = [1 0] [
𝑋1(𝑡)

𝑋2(𝑡)
]                                   (4) 

In (3), 𝑋1(𝑡) is the position (rad)and 𝑋2(𝑡) is the velocity (rad/sec) of the antenna. 
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 Adaptive Control Algorithm 

The Controlled Auto-Regressive Moving Average (CARMA) process model [10] is described 

as: 

𝐴(𝑧−1)𝑦(𝑡) = 𝑧−𝑘𝐵(𝑧−1)𝑢(𝑡) + 𝐶(𝑧−1)𝜉′(𝑡)                                              (5) 

Assume that the polynomials 𝐴(𝑧−1) and 𝐵(𝑧−1) are co-prime, i.e. they do not have any 

common factors. Furthermore, 𝐴(𝑧−1), 𝐶(𝑧−1) are monic, i.e. the coefficient of the highest 

power is unity [11]. The classical pole-placement controller can be described by the following 

control-law: 

𝑞(𝑧−1)𝑢(𝑡) = 𝐻(𝑧−1)𝑟(𝑡) − 𝐹(𝑧−1)𝑦(𝑡)                                     (6) 

where 𝑞(𝑧−1), 𝐹(𝑧−1) and 𝐻(𝑧−1) are polynomials in the back shift operator 𝑧−1. 

The controller has two degrees of freedom, the first is a feed forward with the transfer 

operator 
𝐻(𝑧−1)

𝑞(𝑧−1)
 and the second is a feedback with the transfer operator  

𝐹(𝑧−1)

𝑞(𝑧−1)
. A block 

diagram of the closed-loop system is shown in Figure 3. The controller polynomials 𝐻(𝑧−1),  

𝐹(𝑧−1) and 𝑞(𝑧−1) are designed to ensure fast output tracking of the reference signal 𝑟(𝑡). 

 
Figure 3: Classical Discrete Pole-Placement Controller 

 

The closed-loop characteristic polynomial of the system (Diophantine 

equation) is [4]:  

𝒒(𝒛−𝟏)𝑨(𝒛−𝟏) + 𝒛−𝒌𝑩(𝒛−𝟏)𝑭(𝒛−𝟏) = 𝑻𝒄(𝒛
−𝟏)𝑪 (𝒛−𝟏)                          

(7)                          

The main concept of the pole placement controller design is to specify the desired closed-loop 

poles polynomial 𝑻𝒄(𝒛
−𝟏)  as a design parameter. By solving the Diophantine equation (7), 

the polynomials 𝒒(𝒛−𝟏) and 𝑭(𝒛−𝟏) can be obtained. The closed-loop poles polynomial 
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𝑻𝒄(𝒛
−𝟏) fundamentally determines the property and the performance of the closed system 

[11].  

The desired closed loop poles polynomial 𝑻𝒄(𝒛
−𝟏) and the controller parameters polynomials  

𝑭(𝒛−𝟏) and 𝒒(𝒛−𝟏) are expressed in terms of 𝒛−𝟏 as follows: 

𝑭(𝒛−𝟏) = 𝒇𝟎 + 𝒇𝟏𝒛
−𝟏 + ⋯+ 𝒇𝒏𝒂−𝟏𝒛

−𝒏𝒇+𝟏 + 𝒇𝒏𝒇
𝒛−𝒏𝒇                             

(8)     

𝒒(𝒛−𝟏) = 𝟏 + 𝒒𝟏𝒛
−𝟏 + ⋯+ 𝒒𝒏𝒒−𝟏𝒛

−𝒏𝒒+𝟏 + 𝒒𝒏𝒒
𝒛−𝒏𝒒                            

(9)   

𝑻𝒄(𝒛
−𝟏) = 𝟏 + 𝒕𝟏𝒛

−𝟏 + ⋯+ 𝒕𝒏𝒕−𝟏𝒛
−𝒏𝒕+𝟏 + 𝒕𝒏𝒕

𝒛−𝒏𝒕                    (10)      

where, the parameters 𝒕𝟏 and 𝒕𝟐 are specified as following [11]: 

𝒕𝟏 = −𝟐𝒆𝒙𝒑(−𝜻𝝎𝒏𝑻𝒔) 𝒄𝒐𝒔 (𝑻𝒔𝝎𝒏√𝟏 − 𝜻𝟐)                                                             

𝒕𝟐 = −𝟐𝒆𝒙𝒑(−𝜻𝝎𝒏𝑻𝒔)                                                                                             

Where 𝜻 and 𝝎𝒏 are respectively the damping ratio and natural angular frequency of the 

second order closed loop transient response and 𝑻𝒔 is the sampling time. In order to have a 

unique solution, the polynomials 𝑭(𝒛−𝟏), 𝒒(𝒛−𝟏) and 𝑻𝒄(𝒛
−𝟏) in the equations (8), (9), and 

(10) are specified as follows: 

𝒏𝒒 = 𝒏𝒃 + 𝒌 − 𝟏                     

𝒏𝒇 = 𝒏𝒂 − 𝟏                             

𝒏𝒕 ≤ 𝒏𝒂 + 𝒏𝒃 + 𝒌 − 𝒏𝒄 − 𝟏

}                    

(11) 

Substituting Diophantine equation (7) into equation (6), the following equation is obtained: 

𝒚(𝒕) =
𝒛−𝒌𝑩(𝒛−𝟏)𝑯(𝒛−𝟏)

𝑻𝒄(𝒛−𝟏)𝑪(𝒛−𝟏)
𝒓(𝒕) +

𝒒(𝒛−𝟏)

𝑻𝒄(𝒛−𝟏)
𝝃′(𝒕)                                              

(12)          

It can be seen from equation (12) that the closed loop poles are placed at their pre-specified 

positions given by the desired closed loop poles polynomial 𝑻𝒄(𝒛
−𝟏) which represents the 

design parameter. The controller algorithm explained above can be structured as a self-tuning 

controller as shown in Figure 4. Where, all of the controller’s parameters are calculated 

depending on the change in plant parameters. 
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Figure 4: Classical Self-Tuning Pole-Placement Controller 

The modern Self-Tuning Pole-Placement using discrete state-space control design algorithm 

is given in Figure 5, which is based on an on-line observer with a state feedback [6]. 

 
Figure 5: Shows the modern Self-Tuning pole-placement controller. 

 
Both an on-line observer poles and the closed-loop system poles are placed based on the 

model parameters (�̂�)  obtained from the on-line identification scheme (RLS or ERLS 
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estimators). In Figure 5, the proper dc gain 𝐍(�̂�) is introduced on-line into the design in the 

presence of reference signal 𝐫(𝐭) to eliminate the output steady state error. A discrete state-

space model of any system can be derived and presented in discrete matrix-vector equation as 

follows: 

𝑿(𝒕 + 𝟏) = 𝑨𝑿(𝒕) + 𝑩𝒖(𝒕) + 𝑪𝝃′(𝒕)             

(13) 

𝒚(𝒕) = 𝑬𝑿(𝒕) + 𝒃𝟎𝒖(𝒕) + 𝝃′(𝒕)               

(14) 

The values of both control input signal 𝐮(𝐭) and system output signal 𝐲(𝐭) are read for every 

sampling instant; these values are used for on-line identification methods such as (RLS or 

ERLS estimators). An on-line identification method can be used to estimate plant 

parameters �̂� which are then used to identify state-space model as:  

𝑿(𝒕 + 𝟏) = 𝑨(�̂�)𝑿(𝒕) + 𝑩(�̂�)𝒖(𝒕) + 𝑪(�̂�)𝝃′(𝒕)                                              

(15) 

𝒚(𝒕) = 𝑬(�̂�)𝑿(𝒕)                                       

(16)  

where, the estimated plant parameters �̂� = [−�̂�𝟏 − �̂�𝟐 ⋯−

�̂�𝒏𝒂
   �̂�𝟎 �̂�𝟏 �̂�𝟐 ⋯�̂�𝒏𝒃

   �̂�𝟏 �̂�𝟐 ⋯�̂�𝒏𝒄
]
𝑻
. The matrices of equations (15) and (16) can be placed 

in either plant framework or observer framework [7]. 

The transparent controllable canonical form is illustrated as follows: 

𝑿(𝒕 + 𝟏) = 𝑨𝒄(�̂�)𝑿(𝒕) + 𝑩𝒄(�̂�)𝒖(𝒕) + 𝑪𝒄(�̂�)𝝃′(𝒕)                         

(17) 

𝒚(𝒕) = 𝑬𝒄(�̂�)𝑿(𝒕)                          (18) 

where:      

𝑨𝒄(�̂�) =

[
 
 
 
 

𝟎
𝟎
⋮
𝟎

−�̂�𝒏𝒂

𝟏
𝟎
⋮
𝟎

−�̂�𝒏𝒂−𝟏

𝟎
𝟏
⋮
𝟎

−�̂�𝒏𝒂−𝟐

…
… 
 
…

𝟎
𝟎
⋮
𝟏

−�̂�𝟏]
 
 
 
 

, 𝑩𝒄(�̂�) = [

𝟎
𝟎
⋮
𝟏

],                                                                                                              

𝑬𝒄(�̂�) = [�̂�𝒏𝒃
�̂�𝒏𝒃−𝟏 ⋯ �̂�𝟏] and 𝑪𝒄(�̂�) = [�̂�𝒏𝒄

�̂�𝒏𝒄−𝟏 ⋯ �̂�𝟏]                                                                               

The transparent observable canonical form can be represented as: 

𝑿(𝒕 + 𝟏) = 𝑨𝒐(�̂�)𝑿(𝒕) + 𝑩𝒐(�̂�)𝒖(𝒕) + 𝑪𝒐(�̂�)𝝃′(𝒕)                       

(19)  

𝒚(𝒕) = 𝑬𝒐(�̂�)𝑿(𝒕)                                   

(20)   
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Where  

𝑨𝒐(�̂�) =

[
 
 
 𝟎
𝟏
⋮
𝟎

𝟎
𝟎
⋮
𝟎

…
…
 
…

𝟎
𝟎
 
𝟏

−�̂�𝒏𝒂

−�̂�𝒏𝒂−𝟏

⋮
−�̂�𝟏 ]

 
 
 

, 𝑩𝒐(�̂�) =

[
 
 
 
 

�̂�𝒏𝒃

�̂�𝒏𝒃−𝟏

⋮
�̂�𝟏 ]

 
 
 
 

, 𝑪𝒐(�̂�) =

[
 
 
 

�̂�𝒏𝒄

�̂�𝒏𝒃−𝟏

⋮
�̂�𝟏 ]

 
 
 

 and

 𝑬𝒐(�̂�) = [𝟎 𝟎 ⋯ 𝟎 𝟏]  

The on-line controller design in discrete state-space based on one framework allows 

calculating a matrix 𝑻(�̂�) that transforms between canonical frameworks, which is given as:  

 𝑹𝒄(�̂�) = [𝑬𝒄(�̂�) 𝑬𝒄(�̂�) 𝑨𝒄(�̂�) ⋯ 𝑬𝒄(�̂�) 𝑨𝒄
𝒏−𝟏(�̂�) ]               

𝐑𝐨
−𝟏(�̂�) =

[
 
 
 
 

�̂�𝟏

�̂�𝟐

⋮
�̂�𝐧−𝟏

𝟏

 

�̂�𝟐

⋯
⋮
𝟏
𝟎

 

 ⋯ �̂�𝐧−𝟏

�̂�𝐧−𝟏 𝟏
𝟏       𝟎
𝟎
𝟎

      
𝟎
𝟎

𝟏
𝟎
𝟎
𝟎
𝟎

 

]
 
 
 
 

,  𝐓(�̂�) = 𝐑𝐨
−𝟏(�̂�) ×  𝐑𝐜(�̂�)       (21) 

where, 𝐓(�̂�) is the transformation matrix between transparent canonical frameworks, 𝐑𝐜(�̂�) 

is the observability matrix of transparent controllable canonical form and 𝐑𝐨
−𝟏(�̂�) is the 

inverse observability matrix of transparent observable canonical form. 

The estimated state vector �̂�𝐜(𝐭) of an on-line observer of transparent controllable canonical 

form (plane framework) can be evaluated as follows: 

�̂�𝒄(𝒕 + 𝟏) = 𝑨𝒄(�̂�)�̂�𝒄(𝒕) + 𝑳𝒄(�̂�) (𝒚(𝒕) − 𝑬𝒄(�̂�) �̂�𝒄(𝒕)) + 𝑩𝒄(�̂�)𝒖(𝒕)         

(22) 

The on-line observer gain matrix 𝐋(�̂�) can be easily calculated by using transparent observable 

canonical form [7], therefore, the on-line observer gains 𝐋(�̂�) is transformed to transparent 

controllable canonical form to be used in equation (22) as follows: 

 𝑳𝒄(�̂�) = 𝑻 × 𝑳𝒐(�̂�) = 𝑻 ×

[
 
 
 
 
𝑳𝒐𝟏

(�̂�)

𝑳𝒐𝟐
(�̂�)

⋮
𝑳𝒐𝒏

(�̂�)]
 
 
 
 

= 𝑻 ×

[
 
 
 

�̂�𝒏𝒂
− 𝝈𝒐(𝒏)

�̂�𝒏𝒂−𝟏 − 𝝈𝒐(𝒏−𝟏)

⋮
�̂�𝟏 − 𝝈𝒐(𝟏) ]

 
 
 

=

[
 
 
 
 
𝑳𝒄𝟏

(�̂�)

𝑳𝒄𝟐
(�̂�)

⋮
𝑳𝒄𝒏

(�̂�)]
 
 
 
 

         

(23) 

The equation of the transparent controllable canonical form gain 𝑲𝒄(�̂�) can 

be written as:  

𝑲𝒄(�̂�) = [𝑲𝒄𝟏
(�̂�) , 𝑲𝒄𝟐

(�̂�) ⋯ 𝑲𝒄𝒏(�̂�)] 

= [�̂�𝒏𝒂
− 𝜶𝒄(𝒏) , �̂�𝒏𝒂−𝟏 − 𝜶𝒄(𝒏−𝟏) ⋯ �̂�𝟏 −𝜶𝒄(𝟏)]                   

(24) 

The proper dc gain 𝑵 can be calculated as follows: 
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(𝑵(�̂�) )
−𝟏

= −𝑬𝒄(�̂�)(𝑨𝒄(�̂�) − 𝑩𝒄(�̂�)𝑲𝒄(�̂�) − 𝑰)
−𝟏

𝑩𝒄(�̂�)                  

(25) 

Referring to Figure (7), the control-law can be generated as follows: 

𝒖(𝒕) = 𝑵(�̂�)𝒓(𝒕) − 𝑲𝒄(�̂�)�̂�𝒄(𝒕)               

(26) 

The algorithm of Self-Tuning Observer Pole-placement with Reference Signal and Proper DC 

Gain can be summarized as follows: 

Step 1: Select the desired control-low characteristic equation 𝛂𝐜(𝐳) and the desired observer 

characteristic equation 𝛔𝐨(𝐳). 

Step 2: Read the new values of 𝐲(𝐭) and 𝐮(𝐭). 

Step 3: Estimate the process parameters �̂� using recursive least squares estimator or extende-

d recursive least squares estimator and formulate a state-space model of the 

plant {𝐀𝐜(�̂�), 𝐁𝐜(�̂�), 𝐄𝐜(�̂�), 𝐂𝐜(�̂�)} using equations (17) and (18). 

Step 4: Evaluate 𝐋𝐜(�̂�) using equation (23). 

Step 5: Estimate the state vector �̂�𝐜(𝐭) using equation (22). 

Step 6: Calculate  𝐊𝐜(�̂�) using equation (24). 

Step 7: Compute 𝐍(�̂�) using equation (25). 

Step 8: Apply the control input signal using equation (26). 

Step 2 to 8 are repeated for every sampling instant. 

 
Both the modern self-tuning pole-placement, shown in Figure 6, and the classical controllers 

were programmed as multiple controller algorithms. The design provides a choice of using 

either classical or modern pole-placement controller on-line throughout the flick of 

switches (𝐒𝟏, 𝐒𝟐). The switching (transition) decision between these different fixed structure 

controllers is achieved manually in order to demonstrate the feasibility of the proposed 

approach. Each control mode can be switched on with the flick of the switches depending on 

the user’s choice, whereas the other controller is at standby. This design also, provides the 
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possibility to choose an on-line identification method such recursive least squares (RLS) or 

extended recursive least squares (ERLS) estimators. 

 
Figure 6: Multiple Self-tuning Controllers 

 Simulation Results 

The main aim of developing a GUI is to simplify the control algorithms discussed in previous 

section so that the simulations can be carried out by users who do not even have a previous 

knowledge about the algorithms of self-tuning controllers. Thus, controller tuning and 

evaluation of the closed-loop performance can be realized interactively using the GUI in a 

user-friendly environment as shown in Figure 7. 

 

Figure 7: Multiple Controllers GUI 
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To study the response of the antenna output using multiple controllers, a simulation was 

carried out using the system described by the discrete state-space equations (8) and (9). The 

simulation was performed using recursive least squares estimator over 350 samples with a 

sample time of 1s (approximately 6 minutes) to track a rectangular signal (in dotted black line). 

The desired set point is a square wave signal that has peak values of 1 and -1 with a duration 

of 100 samples. The signal and the response using the Modern Self-Tuning Observer Pole-

Placement controller is shown in the first 150 sample instants in Figure 8-a. The response of 

the system using the Classical Self-Tuning Pole-Placement controller is used after the 150th 

sample. The control input for the two cases are shown in Figure 8-b. Figures 8-a shows that 

these controllers are matched without any transient behaviour during switching mode. 

 

(a)       (b) 

Figure 8: (a) Antenna outputs response for multiple controllers, (b) Multiple control input to 

the Antenna system 

Another simulation was performed over 400 samples (approximately 7 minutes) using 

recursive least squares (RLS) estimator to track a triangular signal changes from 1 to 0 and 

from 0 to 1 every 100 samples instants. In this simulation, the classical self-tuning pole 

placement controller was switched on at 150th sampling instant, whereas the modern 

STOPPRI controller was used in first part of intervals as shown in Figure 8 and Figure 9. 

 

 
(a)      (b) 

Figure 9: (a) Antenna System Output using modern and classical Controllers (b) Control 

Input of the Antenna System using classical and modern adaptive Controllers 

Desired reference 
Response 

Desired reference 
Response 
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In Figure 9-b, a small transient behaviour appeared at the 150th sampling instant during 

switching between modern and classical self-tuning controllers which does not affect the 

antenna response as shown in Figure 9-a and disappeared at steady-state region. 5Conclusions 

A multiple controller scheme incorporating an adaptive mechanism using classical transfer 

function technique and modern discrete state-space technique was designed the scheme was 

simulated with the application to antenna model controlling its elevation. This scheme enables 

the user to effectively switch between the classical and modern controllers. Once the desired 

controller is selected to be on-line, the other controller remains standby to ensure robust 

control performance in the presence of controller failure. Simulation testing the proposed 

method were carried out and shows the performance of the proposed technique. 
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