ID 1097

Physicochemical Properties of Ag-doped Li₃VO₄ as Anode Material for Mithium Ion Batteries

Berouaken Malika^{1*}, Yaddadene Chafiaa¹, Djema Oussama¹, Lasmi Kahina¹, Cheriet Abdelhak¹, Talbi Lamia¹, Amar Manseri¹, Noureddine Gabouze¹

¹Centre de Recherche en Technologie des Semi-conducteurs pour l'Energétique, Division Couches Minces Surfaces et Interfaces. 2, Bd Frantz Fanon, BP 140 Alger 7-Merveilles, Algeria

*Corresponding author's email::BerouakenMalika@CRTSE.dz,malika.berouaken@gmail.com

ABSTRACT

In this work, Li_3VO_4 (LVO) and silver-doped Li_3VO_4 (LVO-Ag) samples have been synthesized via the solgel method and followed with calcinations for their uses as anode materials for lithium ion battery LIBs. The synthesized samples were characterized by XRD, SEM, and CV tests. XRD results showed that the Ag⁺ doping into Li_3VO_4 can lead to lattice micro expansion which favors the intercalation and deintercalation of the Li ions. The SEM characterization displayed that LVO-Ag has a good morphology with a uniform and smaller particle size than that of LVO. The CV measurements demonstrate that Ag doped Li_3VO_4 samples exhibit enhanced electrochemical performance compared to undoped LVO. Therefore, the LVO-Ag sample could serve as a promising anode material for high performance LIBs.

Keywords: Anode material, Lithium-ion battery, Lithium vanadate, Silver doping, Physicochimiques properties.

1. Introduction

Lithium vanadate (Li₃VO₄) has been reported as a potential intercalation/deintercalation anode material for lithium ion batteries (LIBs) with a safe voltage plateau, higher theoretical specific capacity, easy synthesis process and low cost [1,2]. However, its lower electrical conductivity and low initial coulombic efficiency (ICE) limit its development and use in practical applications. To improve these aspects, many strategies have been proposed such as synthetic method [3], compositing [4], ion doping [5,6] and surface coating [7]. Elemental doping has been found to be an effectual approach to enhancing the properties of Li₃VO₄ (LVO) as an anode because ionic doping is the only method that can directly improve electronic conductivity within the LVO crystal. In this study, we report the improved electrochemical performance of LVO by doping with Ag. The Ag-doped Li₃VO₄ (LVO-Ag) sample has been synthesized via the sol-gel method and heatingtreatment procedures. The as-prepared samples were investigated by XRD and SEM characterizations. The electrochemical performance of Ag-doped Li₃VO₄ as anodes for LIBs was studied by CV measurement.

2. Experimental

 Li_3VO_4 is fabricated by a sol gel method and heating-treatment procedures using ammonium metavanadate (NH₄VO₃) as the precursor materials, lithium carbonate (Li₂CO₃) as a source of lithium, citric acid as a chelating agent and silver nitrate(AgNO₃) as a source of silver.

3. Results and Discussion

The XRD results indicated that the Ag^+ ion has been successfully incorporated into the lattice of Li_3VO_4 , which caused an expansion of the lattice and decrease in the size of the crystallites which favors the intercalation and the deintercalation of the Li ions. In addition, SEM characterization displayed that LVO-Ag has a good morphology with a uniform and smaller particle size than that of LVO. The evaluation of the electrochemical properties of the LVO-Ag sample by cyclic voltammetry exhibits good storage performance for lithium ions.

4. Conclusions

Li₃VO₄ and silver-doped Li₃VO₄ have been successfully synthesized via the sol-gel way followed by

calcination. Structural and morphological analysis shows that Ag doping results in a slight lattice expansion and good morphology with a uniform and smaller particle size that favors the intercalation and deintercalation of Li ions. CV results confirm that the Ag doping enhanced the electrochemical properties of Li₃VO₄. Thus, Ag-doped Li₃VO₄ could be a promising anode material for high performance LIBs owing to their excellent physicochemical properties.

References

- [1] Zhu, L., Li, Z., Ding, G., Xie, L., Miao, Y., & Cao, X. (2021). Review on the recent development of Li₃VO₄ as anode materials for lithiumion batteries. Journal of Materials Science & Technology, 89, 68-87.
- [2] Liao, C., Zhang, Q., Zhai, T., Li, H., & Zhou, H. (2017). Development and perspective of the insertion anode Li3VO4 for lithium-ion batteries. Energy Storage Materials, 7, 17-31.
- [3] Shao, G., Gan, L., Ma, Y., Li, H., & Zhai, T. (2015). Enhancing the performance of Li₃VO₄ by combining nanotechnology and surface carbon coating for lithium ion batteries. Journal of Materials Chemistry A, 3(21), 11253-11260.
- [4] Zhang, M., Bai, X., Liu, Y., Zhang, Y., Wu, Y., Cui, D., ... & Tao, X. (2019). Solvothermal processed Li₃VO₄/MoS₂ composites and its enhanced electrochemical performance as lithium battery anode materials. Applied Surface Science, 469, 923-932.
- [5] Liu, X., Li, G., Zhang, D., Chen, D., Wang, X., Li, B., & Li, L. (2019). Fe-doped Li₃VO₄ as an excellent anode material for lithium ion batteries: Optimizing rate capability and cycling stability. Electrochimica acta, 308, 185-194.
- [6] Hsiao, Y. S., Huang, J. H., Weng, L. Y., Cheng, T. H., Chiang, H. H., Lu, C. Z., ... & Huang, Y. C. (2024). Advancing Li₃VO₄ as a high-performance anode material for use in lithium-ion batteries and lithium-ion capacitors. Chemical Engineering Journal, 150973.
- [7] Qin, P., Lv, X., Li, C., Zheng, Y. Z., & Tao, X. (2019). Morphology inheritance synthesis of carbon-coated Li₃VO₄ rods as anode for lithium-ion battery. Science China Materials, 62(8), 1105-1114.