## Geodetic Convexity in the Heisenberg Group

Jyotshana V. Prajapat<sup>1\*</sup> and Anoop Varghese<sup>2</sup>

<sup>1</sup> Department of Mathematics, University of Mumbai, Vidyanagari, Mumbai, India <sup>2</sup> Department of Mathematics, SIESASCS, Sion (W), Mumbai, India

\*Corresponding author's e-mail: jyotshana.prajapat@mathematics.mu.ac.in

## ABSTRACT

A Heisenberg group  $\mathbb{H}^n$  (where  $n \ge 1$ ) is a Lie group  $\mathbb{C}^n \times \mathbb{R} = \{(z,t) | z \in \mathbb{C}^n, t \in \mathbb{R}\}$  together with the group operation defined as  $(z,t)(w,s) = (z+w,t+s+2\mathrm{Im}(z,\overline{w}))$  where  $z.\overline{w} = \sum_{j=1}^n z_j \overline{w_j}$  is the Hermitian inner product in the complex space. This group structure imposes constraints on motions in the space  $\mathbb{H}^n$  giving rise to a geometry which is sub-Riemannian but not Riemannian. Various notions of convex sets have been studied in the Heisenberg Group  $\mathbb{H}^n$  (for  $n \ge 1$ ) which may not necessarily be equivalent. A few of them include horizontal convexity, group convexity, convex in the viscosity sense and geodetic convexity. Here, we discuss the concept of geodetically convex sets in  $\mathbb{H}^n$  for  $n \ge 1$  and classify them. A geodetically convex set in  $\mathbb{H}^n$  is defined to be a set which contains every geodesic connecting every pair of points in the set. We prove that every geodetically convex set in  $\mathbb{H}^n$  is either an empty set, a singleton set, an arc of a geodesic or the whole space  $\mathbb{H}^n$ . These results generalise the known results of  $\mathbb{H}^1$  to  $\mathbb{H}^n$  for  $n \ge 1$ .

Keywords: Heisenberg; geodetic; horizontal

## How to Cite

J. V. Prajapat and A. Varghese, "Geodetic Convexity in the Heisenberg Group", *AIJR Abstracts*, pp. 20–20, Feb. 2024.



©2024 Copyright held by the author(s). Published by AIJR Publisher in "7<sup>th</sup> International Conference on Recent Advances in Mathematical Sciences and its Applications-2024: Abstract Book" (RAMSA-2024), 29 Feb-02 March 2024. Organized by the Department of Mathematics, Jaypee Institute of Information Technology, Noida, India.