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A B S T R A C T  

In a variety of fields including financial applications like stock market analysis deep learning has 

achieved amazing success in producing precise forecasts. To train deep learning models for financial 

forecasts, however, is a difficult undertaking that calls for careful consideration of a variety of 

hyperparameters and optimisation strategies. Optimisation is a technique that is part of mathematics 

and is used to solve analytical and numerical problems in minimisation and maximisation of functions. 

It is thus used for getting improved prediction in terms of quality and performance. In this paper we 

discuss different techniques like SGD, AdaGram and others, that have proven effective in improving 

the convergence and generalization performance of deep learning models in finance. Here we focus on 

financial applications where deep learning algorithms are used for the problem solving were 

optimization is also a part. 
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1 Introduction 

Even the most seasoned financial gurus find it difficult to make precise predictions since the stock market is a dynamic 

system that is complex and subject to many different influences. With the introduction of machine learning, however, 

there has been an increase in interest in utilising sophisticated algorithms to evaluate and project market patterns.  In 

order to better inform investment decisions and increase profitability, machine learning techniques can be used to find 

patterns and trends in huge historical data sets. In this regard, using machine learning and soft computing algorithms 

in stock price forecasting has emerged as an important research area [1], [2]. 

To forecast stock prices and market patterns, many machine learning methods have been used, includes Artificial 

neural networks, SVM, decision trees etc. These algorithms have shown encouraging results, which has boosted 

interest in their use in the finance sector. For instance, a study by Jang et al. (2019) that used a deep learning algorithm 

to estimate stock prices showed how good it was at correctly predicting trends. Lee et al., (2019) employed machine 

learning algorithms to estimate stock market movements and found that they were more accurate than conventional 

forecasting methods [5], [18]. 

Although the application of machine learning algorithms to stock market forecasting is still in its preliminary stages, it 

has the potential to fundamentally change the way investors make choices. These algorithms may aid investors in 

reducing risk and maximising returns by offering more precise and trustworthy forecasts. As a result, more research 

and development in this field are probably going to continue, which will eventually result in better investing methods 

and more profitability [6], [7]. 

Because deep learning architectures allow computers to learn from enormous amounts of  data and make predictions 

and judgements with incredible precision, they have completely changed the field of artificial intelligence. Training a 

complex Deep neural network, however, is a computationally demanding task that consumes big amount of  time and 

resources. That being the case, there is a rising need for effective optimisation methods that can reliably and quickly 

train neural networks. 
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Deep learning relies on optimisation techniques to find out the optimum parameters that will minimise the difference 

between expected and actual values. With each iteration of the training process, these algorithms adjust the weight and 

bias of  the neural network to find ideal set of  parameters [3]. 

For deep learning, several optimisation algorithms have been introduced, each having unique merits and demerits. One 

of the most used deep learning optimisation technique is gradient descent, and to enhance its performance, versions 

like stochastic gradient descent (SGD), Adam, and Adagrad have been created. 

In addition to conjugate gradient, L-BFGS, and quasi-Newton approaches, other different optimisation algorithms 

were also applied to deep learning with varied degrees of  success. Deep neural networks' generalisation performance 

and convergence rate have also recently improved by to recent developments in optimisation algorithms, such as 

second-order techniques. 

In conclusion, optimisation algorithms are essential to deep learning systems and have significantly advanced the area 

of  artificial intelligence through research and use. To increase the effectiveness and efficiency of deep learning 

algorithms, researchers are constantly investigating new optimisation approaches and algorithms. 

2 Optimizing Algorthms 

2.1 Gradient Descent 

For finding the smallest value of  a cost function, an optimisation procedure called gradient descent is used. It entails 

inverse proportionally change a model's parameters with the cost function's gradient corresponding to the parameters 

[8]. 

In Gradient Descent (GD) in order to minimise the given function, it uses the gradient (i.e., slope) of  the function 

corresponding to the parameters to iteratively alter the function's parameter values. The GD update rule can be stated 

as follows: 

k = k - λ ∇J(k) 

Where k is the vector parameter, J(k) the cost function, λ the learning rate and ∇J(k) the gradient of  J(k).  

2.2 Stochastic Gradient Descent (SGD) 

Instead of using the whole training set, SGD a variation of GD, randomly chooses a subset of training 

samples (also known as a mini-batch) to evaluate the gradient of the cost function. SGD becomes quicker 

as a result, but the optimisation process also becomes more random as a result [9]. 

Stochastic gradient descent (SGD), only those data points that were randomly chosen at each iteration were used to 

compute the gradient. The SGD update rule is written as follows:  

k = k - λ ∇J_i(k) 

Where i is the index of  the randomly selected data point or batch, and ∇J_i(k) is the gradient value of  J(k) 

corresponding to k using only the selected data points. 

2.3 Mini-Batch Gradient Descent 

A middle ground between SGD and GD is a known mini-batch gradient descent method. Instead of  taking the full 

training set, it computes cost function gradient on very small randomly taken batches of  training samples to strike a 

balance between convergence speed and computing efficiency [9]. 

A compromise between GD and SGD, Mini Batch Gradient Descent (MBGD) computes the gradient using a few 

batch of  data points at each iteration. The MBGD update rule can be stated as follows: 

k = k - λ ∇J_B(k) 

Where B is size of batch, and ∇J_B(k) is the gradient of  J(k) with respect to k using only the selected batch of  data 

points. 
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2.4 Momentum 

Gradient Descent's convergence speed and stability are increased using the momentum approach. It introduces a 

momentum term that, by leveraging knowledge from earlier gradient updates, quickens the optimisation process [10]. 

A GD variant known as momentum leverages the gradients' moving average to speed convergence and tame 

oscillations. Momentum's update rule is as follows: 

v =ɡ v + (1 - ɡ) ∇J(k) k = k - λv 

Where ɡ is the momentum value, which controls the weight of the previous gradient, v is the velocity vector, and λ is 

the learning rate. 

2.5 Nesterov Accelerated Gradient (NAG) 

By performing a "look ahead" before calculating the gradient of  the cost function, Nesterov Accelerated Gradient 

(NAG), an extension of Momentum, speeds up the convergence of  the optimisation process [11]. 

Momentum's Nesterov Accelerated Gradient (NAG) uses a "lookahead" update to more accurately predict the future 

gradient. The NAG update rule can be stated as follows: 

v = ɡv + (1 - ɡ) ∇J (k - ɡv) k = k - λv 

where k - ɡv is the "lookahead" position 

2.6 Adagrad 

An adaptive learning rate technique called Adagrad dynamically modifies the learning rate according to how frequently 

the parameters are updated. For values that are changed frequently, it slows down learning rate while speeding it up 

for those that are updated infrequently [12]. 

Based on the information from previous gradients learning rate of  all parameters get adjusted. AdaGrad's update rule 

can be stated as follows: 

G = G + ∇J(k)^2 k = k - (λ / √G + ε) ∇J(k) 

Where G is the historical sum of squared gradients, ε is the constant that is used to avoid the case of  division by zero, 

and √G is the element-wise square root of  G. 

2.7 Adadelta 

A moving average of gradients and the moving average of  squared updates are introduced in the AdaDelta form of 

Adagrad to address the problem of the learning rate declining too quickly over time [13]. By employing the moving 

average of  historical gradients rather than the historical sum of squared gradients, AdaDelta, a variation of AdaGrad, 

increases the adaptiveness even more. AdaDelta's update rule can be stated as follows: 

E [y2] t = ɡE[y2] {t-1} + (1 - ɡ)∇J(k2 )2 

Δkt = - (√E[Δk2] {t-1} + ε) / (√E[y22]t + ε) 

∇J(k) k = k + Δkt 

where E[y2]t is the moving average value of the historically calculated squared gradients, E[Δk2]t is the moving average 

value of  the historically calculated squared updates, ɡ is the decay rate. 

2.8 ADAM 

The advantages of  Momentum and Adagrad are combined in the well-known optimisation method Adam. The 

learning rate and the momentum term are adaptively adjusted using a moving average of  the gradients and the squared 

gradients [4]. 

ADAM (Adaptive Moment Estimation) combines concepts from Momentum and AdaGrad to improve performance 

on a variety of  optimisation problems. 
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The equations for updating parameters can be e given as follows: 

mt = ɡ1 * mt-1 + (1 - ɡ1) * yt  

vt= ɡ2 * vt-1 + (1 - ɡ2) * yt 2 

 mhat_t = mt / (1 - ɡ1t) 

 vhat_t = vt / (1 - ɡ2t)  

kt = kt-1 - λ * mhat_t / (√vhat_t + ε) 

Where kt is the parameter vector at iteration moment t.yt is the gradient vector at iteration t. λ is the learning rate. ɡ1 

and ɡ2 are hyperparameter values that manage the decay rates of  moving average of  m and v respectively. mhat_t and 

vhat_t are bias corrected estimates of  the primary and secondary moment values of  the gradients, respectively. ε is 

used to avoid the case of  division by zero problem.  

Adam calculates first two moment values of  the gradients with the moving averages. While the second moment 

estimate vt is comparable to the historical sum of squared gradients used in AdaDelta and the AdaGrad , the first 

moment estimate mt is much the same to the momentum term used in the Momentum algorithm. The initialization 

bias of  the moving averages, which is more obvious at the start of  training when the moving averages are initialised 

to zero, is corrected for using the bias-correction terms mhat_t and vhat_t. 

Adam is superior to other optimisation algorithms in a number of  ways, including the fact that it uses less memory 

and is computationally efficient. It works effectively for issues with huge datasets and highly dimensional parameter 

spaces. It can withstand gradients that are noisy or sparse. Compared to other algorithms, it is less dependent on the 

selection of hyperparameters. 

2.9 Adamax 

Adamax is similar to Adam which varies in the fact that it uses the gradient’s L infinity norm as opposed to their 

squared gradients. 

2.10 Rmsprop 

Another adaptive learning rate approach, RMSProp, modifies the learning rate using the moving average value of  the 

squared gradients [15]. Using the Nesterov Accelerated Gradient, Nadam extends Adam's optimisation capabilities. In 

comparison to Adam, it delivers faster convergence and superior generalisation performance. 

2.11 NADAM 

A variation of Adam called NADAM (Nesterov accelerated ADAM) combines the concepts of  Adam and NAG to 

offer faster convergence and improved generalisation. Like Adam, NADAM updates the parameters using the first 

two moment estimations of  gradient but utilises a different update rule that takes Nesterov Momentum into account 

[16]. 

The NADAM update rule might be stated as: 

mt = ɡ1 * mt-1 + (1 - ɡ1) * yt 

 vt = ɡ2 * vt-1 + (1 - ɡ2) * yt2  

mt_hat = mt / (1 - ɡ1t)  

vt_hat = vt / (1 - ɡ2t)  

kt = kt-1- λ* [ (1 - ɡ1) * yt / (1 - ɡ1t) + ɡt * mt_hat / (1 - ɡ1t) + ɡ2 * √vt_hat / (1 - ɡ2t+ε)] 
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Where λ is the learning rate. ɡ1 and ɡ2 are the decay rates for the first two moment estimates, respectively.yt is the 

gradient at time t.mt and vt are the exponentially weighted moving averages of  squared gradient and the gradient, 

respectively. mt_hat and vt_hat are bias-corrected estimates of  the first two moment estimates. kt and kt-1 are the 

updated and the prior parameter values, respectively. ε is a very small constant that is inserted to avoid the problem of 

division with zero. 

The updation of initial instant estimate is where NADAM and Adam diverge. While NADAM corrects the first 

moment estimate by conducting a lookahead step using the most recent estimates of the primary and secondary 

moments, Adam updates the initial moment estimate using the unbiased one of  the gradient. 

The optimizer can more accurately follow the curvature of  the loss surface thanks to this lookahead step. To further 

enhance the optimisation procedure, NADAM also employs an Adam's second moment estimate that is bias 

corrected. Generally speaking, NADAM is a strong optimizer that combines the advantages of Adam and Nesterov 

Momentum to offer quicker convergence and improved generalisation. 

2.12 EADAM 

The extragradient method and adaptive momentum are combined in the optimisation algorithm EADAM 

(Extragradient with Adaptive Momentum), which effectively resolves non-convex optimisation issues. Escape from 

High-Dimensional Non-Convex Mazes with Adaptive Momentum [14, 22]. 

During the optimisation process, the momentum parameter is adaptively adjusted using a technique called adaptive 

momentum. The contribution of the prior gradient to the current update is controlled by the momentum parameter. 

Adaptive momentum techniques can efficiently balance the exploration and exploitation of the search space while 

accelerating convergence by modifying the momentum parameter. Extragradient and momentum phases make up the 

two primary steps of  the EADAM algorithm. 

The final update is obtained using the momentum step after an intermediate point has been obtained using the 

extragradient step. The EADAM update rule is stated as: 

Intermediate update:  

ki+1 = Proj_Ω (ki - λ∇f(ki))  

Momentum update: ki+1 = ki +ɡ (ki+1 - ki) 

where ki is the current vector, ki+1 is the intermediate vector, ∇f(ki) is the gradient vector of  the objective function f  

at ki, λ is the step size, ɡ is the momentum parameter, and Proj_Ω (ki) is the projection of ki onto the feasible set Ω. 

There are multiple EADAM variations that alter the momentum update or alter the momentum parameter using 

various methods. These variations consist of: 

A condensed variant of  EADAM that omits the projection step and employs an extragradient step with a fixed step 

size is called EAM (Extragradient with Adaptive Momentum). 

Extra gradient with Adaptive Momentum and Stochastic Gradient Descent (EAMSGD), is a variation of EAM that 

calculates the gradient in the extragradient step using stochastics gradient descent method. 

Extragradient with Adaptive Momentum and Limited-memory Broyden-Fletcher-Goldfarb-Shanno (EAM-LBFGS): 

A variation of EAM that adjusts the momentum parameter and approximates the Hessian matrix using the L-BFGS 

approach. 

A variation of EAM called EAM-BB (Extragradient with Adaptive Momentum and Barzilai-Borwein) uses the 

Barzilai-Borwein method to modify the momentum parameter in light of prior updates. 

A variation of EAM that uses AdaGrad to adaptively change the extragradient step's step size is known as EAM-

AdaGrad (Extragradient with Adaptive Momentum and AdaGrad). 
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3 Literature Review 

Quadir et al. used adam optimizer for optimizing a multi layered sequential LSTM [17]. Saurabh et al. in their work 

based on LSTM-RNN for the prediction of stock prices future values tested with different optimizers and found 

adam optimizer came out to be the best among them [27]. Das et al. used adam optimizer along with a multilayer 

perceptron for the prediction of stock values [28]. 

Rana et.al used different optimizers and compared the results using LSTM recurrent networks [19]. Bhandari et al. used 

Adam, adagrad, Nadam along with a LSTM network [20]. Rao et al. in his paper suggested that GRU with gradient 

descent and adam optimizer produces better results [29]. Deepika et al. used Artificial bee colony algorithm as the 

optimizer algorithm and used with LSSVM for stock trend anticipation [21]. 

Upadhyay et.al used market sentiment as a data and adam optimizer for optimization and LSTM as the algorithm for 

prediction [30]. Aiswarya et al. used adam optimizer in a machine learning model for stock price forecasting [31]. Rekha 

et al. used RNN, LSTM and GRU algorithms for the stock market prediction and Adam optimizer was used as the 

optimizer in these setups [23]. Jiang et al. used different methods including Adam optimizer in Bitcoin price prediction 

along with LSTM and GRU [24]. 

Kamalov et al. used RMSprop and compared with SGD and Adam optimizers in deep learning algorithm for stock 

price estimation [25]. Chen in his work on forecasting financial and economic market used RMSProp as the optimizer 

[26]. 

4 Results and Discussion 

Figure 1: Popularity Metrics of the methods 

Taking account of  the works that are considered in the study it can be seen from Figure 1 that Adam algorithm is the 

most used and is considered as the pioneer method for optimising the deep learning parameters when they are used 

in financial applications. 

5 Conclusion 

This paper concludes by reviewing the latest trends in optimizing machine learning algorithms especially deep learning 

which are used in financial applications. In the latest researches it is found that Adam algorithm and its variants are 
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much used. most algorithms are giving a good result after optimizing. But there is still room for improvements in the 

research as the problem of getting stucked in local minima is still there and finding a good approach to make the loss 

function ideal is still open to improvement. 
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