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ABSTRACT  

Prompt prediction of landslide occurrence and movement in a future rainstorm is one of the most 

effective manners to cope with the increasing landslide risk in a changing climate. Despite the rapid 

development of many machine learning algorithms, most studies stay on landslide susceptibility 

mapping because of the challenging time-unknown and terrain-unmatched issues in landslide 

forecasting. This study proposes two novel machine learning strategies to predict the spatio-

temporal distribution of landslides considering both initiation and mobility. Hong Kong is taken as 

an example to demonstrate the capacity of city-scale landslide forecasting using machine learning. 

The spatio-temporal evolution of both man-made slope failures and natural terrain landslides in a 

rainstorm can be well predicted using machine learning models, which can provide a powerful real-

time decision-making tool for landslide early warning and risk management. 
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1 Introduction 

Hong Kong has long struggled with landslides, because of its rainy climate, hilly terrain, and dense 

urban development (Cheung, 2021). According to the records of the Geotechnical Engineering Office 

(GEO), over ten major storms have occurred every year and have triggered approximately 380 natural 

terrain landslides and 230 man-made slope failures annually. A severe rainstorm can impact a large area 

and trigger thousands of landslides in a short time, wreaking havoc on urban systems and causing 

enormous fatalities. For example, the record-breaking rainstorm on 6-9 June 2008 alone triggered about 

2400 natural terrain landslides and 200 man-made slope failures over the territory of Hong Kong, most 

of which occurred within the critical four hours; the 18 June 1972 rainstorm triggered two catastrophic 

landslides on Po Shan Road and Sau Mau Ping that caused 138 deaths in a single day. 

To manage landslide risk in a changing climate, in addition to structural landslide mitigation 

programmes that augment the capacity of slope safety system (e.g., Landslip Preventive Measures 

Programme (1977-2010) and Landslip Prevention and Mitigation Programme (2010-present) 

implemented by the GEO), non-engineering measures such as early warning and emergency 

management will be more effective in minimising the consequences of landslides. The GEO has 

operated a territory-wide landslide early warning system for 40 years (Kong et al., 2020), the latest 

version of which is based on statistical rainfall-landslide correlations (Xiao & Zhang, 2020). The most 

critical question in landslide early warning concerned by decision-makers is “where and when would 

landslides occur amid a rainstorm?” This requires the prediction of spatio-temporal distribution of 

landslide occurrence. After initiation, landslides may travel certain distances downstream (e.g., 

hundreds of metres), threatening more people and properties along larger runout areas. For example, on 

7 June 2008, massive landslide debris travelled over 600 m from its source to Yu Tung Road (Figure 1), 

resulting in the closure of westbound lanes for two months. The prediction of landslide mobility is thus 

another important issue in landslide forecasting. 
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Figure 1: The Yu Tung Road landslide on 7 June 2008 

Physically-based methods (Baum et al., 2010; Kwan et al., 2021; Shen et al., 2018) can predict both 

the initiation and post-failure movement of landslides but are less suitable for real-time applications 

because of the high computational costs. By contrast, data-driven methods such as statistical correlation 

and machine learning (Dai & Lee, 2002; Finlay et al., 2011; Merghadi et al., 2020; Wang et al., 2021) 

can make real-time predictions. Machine learning has emerged as a powerful alternative to traditional 

statistical methods, with the availability of larger amounts of landslide data and the advancement of 

computer technologies. Despite the rapid development of many algorithms, most machine learning-

related landslide studies stay on susceptibility mapping that identifies landslide-prone areas from the 

spatial distribution of historical landslide records. The absence of time-related elements in landslide 

susceptibility mapping makes it fail to fully leverage the high efficiency of machine learning and fail to 

forecast landslide occurrence and movement in a future rainstorm. 

This study will first overview the challenges in machine learning-powered landslide forecasting and 

then develop novel machine learning strategies to predict the spatio-temporal distribution of landslides 

considering both initiation and mobility. Hong Kong will be taken as an example to demonstrate the 

capacity of city-scale landslide forecasting using machine learning. The machine learning models can 

provide a powerful real-time decision-making tool for landslide early warning and risk management. 

2 Challenges In Landslide Forecasting 

In the literature, spatio-temporal landslide occurrence prediction and post-landslide runout prediction 

are rarely investigated using machine learning techniques. This is mainly because (1) most landslide 

databases collected are not qualified for such purposes, particularly missing records of landslide times 

and paths; and (2) landslide initiation and mobility involve more complicated dynamic processes, thus 

requiring more advanced task-specific machine learning strategies than general algorithms. Specifically, 

the time-unknown issue and terrain-unmatched issue are the most challenging problems hindering the 

predictions of landslide initiation and mobility, respectively. 

2.1 Time-unknown issue in landslide initiation forecasting 

To develop a machine learning model that can predict landslide occurrence in a future rainstorm, it is 

vital to link historical landslides with their triggering rainstorms through the recorded failure times, 
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known as storm-based data integration (Xiao et al., 2022). By this means, dynamic rainfall features of 

different rainstorms can be utilised for temporal prediction, in addition to various static slope and geo-

information features as used in landslide susceptibility mapping.  

Notably, the failure time is available for man-made slope failures but not for natural terrain landslides. 

Man-made slope failures in urban areas can be promptly reported by the public so that the failure time 

can be accurate to a day. By contrast, natural terrain landslides in remote areas are usually identified 

through post-event geological surveys or interpretation from remote sensing images over a certain 

period (e.g., once in a year or even less frequent), from which only the range of landslide time (i.e., 

within several possible rainstorms) can be determined. Conventional data processing cannot handle 

such time-unknown landslide data well. One straightforward choice that limits training data to a small 

portion regarding time-known data will underestimate the predicted number of landslides undoubtedly. 

On the contrary, another common method that assigns all time-unknown landslides to the largest storm 

in a given period will lead to over-prediction. In a simple scenario with known years of landslides, Ko 

& Lo (2016) proposed a practical year-storm adjustment approach according to the rainfall frequency 

to approximately transform the year-based statistical rainfall-landslide correlations into storm-based 

ones. This adjustment approach has not been rigorously verified and may not be extensible to more 

complex scenarios. 

2.2 Terrain-unmatched issue in landslide mobility forecasting 

Regarding landslide mobility prediction, previous studies have established some region-specific 

statistical relationships between the fall height and travel distance, two key parameters describing a 

landslide runout path. As a matter of fact, both variables are unknown before the stop of landslide mass 

movement. With the unknown fall height, a trial-and-error terrain matching process is required to 

construct a 3-D runout path. Specifically, the longitudinal profile of a possible runout path starting from 

the landslide source (e.g., the steepest path) is first extracted from a 3-D digital terrain model (DTM), 

and all cells along the path are then visited one by one to determine where the landslide should 

terminate, namely the best location whose fall height and travel distance to source on the DTM satisfy 

the statistical correlation of the database. For statistical models, such a terrain matching process can be 

adopted for path prediction after the model training but is hardly involved during the model training. 

The inconsistency in terrain matching may reduce the accuracy of landslide runout path prediction (Ju 

et al., 2022), despite a strong correlation between the fall height and travel distance. 

3 Machine Learning-Powered Landslide Forecasting 

3.1 Comprehensive databases for Hong Kong 

Hong Kong is a society rich in landslide-related data, which provides an ideal opportunity to release the 

potential of machine learning in landslide forecasting. Fundamental databases for this task should cover 

rainstorms (Figure 2(a)), slopes (Figure 2(b)), and landslides (Figure 2(c)). In the period of 1984–2017, 

419 major rainstorms are identified, and the hourly rainfall amounts of 50 Hong Kong Observatory 

(HKO) rain gauges and 91 GEO rain gauges are collected.  

The slope information system managed by the GEO had registered more than 60,000 man-made slopes 

of cut slopes, fill slopes, and retaining walls. Past landslides in Hong Kong have been compiled into 

two databases. One is the Enhanced Natural Terrain Landslide Inventory (ENTLI) 

(https://www.geomap.cedd.gov.hk/GEOOpenData/eng/ENTLI.aspx), including 90,000 relict natural 

terrain landslides and over 21,000 recent natural terrain landslides in 1924–2019. These landslides are 

interpreted from annual aerial photos so that the failure time is only accurate to a year. The ENTLI takes 
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points and polylines to represent the landslide sources and paths, respectively, and records four key 

geometric features, namely travel distance, fall height, length, and width of the landslide source. The 

catalogue of landslide incidents (https://www.geomap.cedd.gov.hk/GEOOpenData/eng/Incident.aspx) 

is another major landslide database, which records a few reported natural terrain landslides and about 

8000 man-made slope failures in 1984–2017. Prompt reporting from the public makes the failure time 

accurate to a day in most incidents. The tabular catalogue of landslide incidents contains the time, 

location, type, scale, and consequences of landslides. 

In addition to rainfall, slope, and landslide databases, geographic databases of terrain, geology, land 

cover, and infrastructure are also utilised in machine learning in this study. Given such rich data, the 

abovementioned time-unknown issue and terrain-unmatched issue can be properly addressed through 

new machine learning strategies developed as follows. 
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Figure 2: Comprehensive databases for Hong Kong: (a) rainstorm; (b) slope; (c) landslide 

Figure 3: Probabilistic modelling strategy for landslide initiation forecasting 

3.2 Probabilistic modelling strategy for landslide initiation forecasting 

If landslide times are known (i.e., storm-labelled landslides as shown in Figure 3), a storm-based 

landslide forecasting model can be directly established using any machine learning algorithm (Xiao et 

al., 2022), similar to the procedure of landslide susceptibility mapping but involving dynamic rainfall 

features such as the maximum rolling 24-h rainfall amount to achieve temporal prediction. 

If landslide times are unknown but labelled over a consistent period (e.g., one year for year-labelled 

landslides in ENTLI), it is conservative to claim that, for a particular landslide, the slope has at least 

one failure triggered by storms in this period. Therefore, Nl slopes after Np-period observations produce 

a total of N = Nl × Np records (Figure 3). For each record, the probability P of observing at least one 

failure for a slope, after suffering ns storms in a period, can be evaluated as (Xiao & Zhang, 2023a): 
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where ps = failure probability of a slope in the sth storm, estimated by a storm-based landslide 

forecasting model. Equation (1) is referred to as probabilistic modelling strategy of ‘at least one failure’ 

for time-unknown landslides. Consequently, the cost function J(θ) of the machine learning model given 

a set of model parameters θ can be written as: 
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where yi = period-based observation of the ith record: yi = 0 for a non-landslide record and 1 for a 

landslide record; and Pi = predicted failure probability of the ith record using Equation (1).  

Equation (2) is similar to the cost function used in storm-based forecasting for time-known landslides, 

but the landslide observation frequency has changed from every storm to a period consisting of several 

storms. Through the ‘at least one failure’ strategy, the storm-based failure probabilities are transformed 

into period-based failure probabilities to match the period-based observations. In other words, although 

only Nl × Np observations are available, Equation (2) still computes Nl × Ns failure probabilities (where 

Ns is the total number of storms in all periods), consistent with that in a storm-labelled scenario. This 

enables storm-based landslide forecasting using time-unknown landslide data. 

Figure 4: Trial-and-error terrain matching for landslide runout path prediction 

The realistic landslide database is more often a mixture of both time-known and time-unknown 

landslides, and the observation period may vary from one slope to another. In such a case, an integrated 

machine learning model can be established using the proposed ‘at least one failure’ strategy, and the 

cost function is a weighted combination of time-known and time-unknown landslides (Xiao & Zhang, 

2023a).  

During the landslide initiation forecasting, it is also possible to simultaneously incorporate the 

prediction of landslide scale (Xiao et al., 2022), by re-formulating the binary classification problem 

(i.e., non-landslide and landslide) as a multiclass classification problem according to various landslide 

scales (e.g., non-landslide, and very minor, minor, major, and very major landslides). The landslide 

scale will have a great impact on the subsequent prediction of landslide mobility. 

H
T
,1

H
T
,j

H
T
,n

LT,j

LT,n

LT,1
Landslide source

Steepest path

Longitudinal profile along steepest path3-D digital terrain

Predicted travel distance A
s
s
u

m
e

d
 f

a
ll 

h
e

ig
h

t

Matched travel distance

Termination 

location 

Minimum 

matching error

LP,n

LP,j

LP,1



Series: AIJR Proceedings 

ISSN: 2582-3922 

 

 

Machine Learning-Powered Landslide Forecasting: From Initiation to Mobility 

 

 

172 

Proceedings DOI: 10.21467/proceedings.159 

ISBN: 978-81-965621-6-8 

3.3 Terrain matching strategy for landslide mobility forecasting 

Traditionally, a statistical model (e.g., multivariate linear regression) only predicts the landslide travel 

distance; hence, a trial-and-error terrain matching process is required to convert the distance into a path. 

As shown in Figure 4, it requires a 3-D DTM and a landslide runout analysis model that predicts a travel 

distance (L) from a given fall height (H) and other factors. A possible runout path starting from the 

source is identified first on the DTM by assuming that the landslide moves along the steepest path to an 

adjacent position. If the landslide stops at the jth cell along the path (j = 1, 2, …, n), the actual fall height 

and travel distance on the DTM from the landslide source to the termination location are HT,j and LT,j, 

respectively, while the runout analysis model predicts another travel distance LP,j from the given HT,j. 

The two distances (i.e., LT,j and LP,j) may not be identical. After going through all cells on the path, the 

cell with a minimum matching error between LT,j and LP,j can be taken as the termination location, and 

the runout path is accordingly determined. Note that the targets of model training and path prediction 

are inconsistent in a statistical model. For model training, the target is to fit the predicted travel distance 

(LP) to the one recorded in the landslide database (L), while it is to match the predicted travel distance 

to the one derived from the DTM (LT) in path prediction. 

Figure 5: Terrain matching strategy for landslide mobility forecasting 

A consistent terrain matching strategy in both model training and prediction is proposed for machine 

learning-based landslide runout path prediction (Ju et al., 2022), as shown in Figure 5. Unlike 

conventional machine learning models, an additional step for determining the most probable 

termination location is inserted between the forward runout prediction and backward parameter 

estimation. The explanatory variables of each cell along the possible path are fed separately into the 

machine learning model to predict multiple travel distances LP,j (i.e., Step II). Afterwards, the cell k with 

a minimum matching error between LP,j and the actual distance LT,j on the DTM is regarded as a 

temporary termination cell (i.e., Step III), and the actual distance LT,k is then fed back into the machine 

learning model to estimate model parameters (i.e., Step IV). These procedures are iteratively repeated 

until the optimal model parameters θ are obtained. The cost function to be minimised can be written as: 
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where LT,k,i = the most probable travel distance at location k on the DTM for the ith landslide and the 

termination location k can be determined according to the fitness of terrain as: 
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where LP,j,i = predicted travel distance at the jth cell on the ith landslide path.  

Combining Equations (4) and (3) makes the predicted travel distance (LP) first fit the one on the DTM 

(LT) and then the one recorded in the landslide database (L). Such a pseudo bi-objective optimization 

makes the predicted landslide path more comparable with the terrain reality. Another advantage of the 

terrain matching iteration is that: it can easily consider the variable trace features from the landslide 

source to the jth cell when visiting all possible termination locations.  

It should be highlighted that the proposed machine learning strategies to address the time-unknown 

issue in initiation forecasting and terrain-unmatched issue in mobility forecasting can be flexibly 

applied with various basic machine learning algorithms, such as logistic regression, neural network, or 

even deep learning techniques, as they only need the updating of cost functions. The validation and 

comparison of the proposed machine learning strategies against historical landslide data and statistical 

models can be referred to (Xiao & Zhang, 2023a) and (Ju et al., 2022). The following section will take 

Hong Kong as an example to demonstrate the capacity of city-scale landslide forecasting using machine 

learning. 

4 Case Studies for Hong Kong 

4.1 Spatio-temporal landslide forecasting 

Applying the probabilistic modelling strategy, regardless of whether the landslide time is known or not, 

two landslide initiation forecasting models can be developed for the 60,000 registered man-made slopes 

(Xiao et al., 2022) and 26 million natural terrain hillslope cells (5 m × 5 m) (Xiao & Zhang, 2023b), 

respectively. Logistic regression is adopted as the basic machine learning classifier in both models. 
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Figure 6: Predicted evolution of man-made slope failures during the 6-9 June 2008 storm 

 

 

Figure 7: Predicted evolution of natural terrain landslides during the 6-9 June 2008 storm 

The 6-9 June 2008 storm is one of the most severe rainstorms in the history of Hong Kong, with 1-h, 4-

h, and 24-h rainfall amounts all falling in the top five rainstorms ever recorded. The storm triggered 162 

confirmed failures of registered man-made slopes and about 2400 natural terrain landslides (estimated). 

The spatio-temporal evolutions of man-made slope failures (Figure 6) and natural terrain landslides 

(Figure 7) during the 6-9 June 2008 storm can be predicted using the two machine learning model with 
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nearly real-time efficiency. For man-made slopes, hardly any landslides occur before time t = 30 h; the 

western Lantau Island is the first area to witness many landslides at t = 32 h; afterwards, there is a rapid 

outbreak of landslides on the north-western Hong Kong Island and western Kowloon. The predicted 

number of natural terrain landslides experiences a similar temporal escalation, from less than 100 at t = 

30 h to more than 1800 at t = 34 h, but almost all concentrate on western Lantau Island in space. Both 

the predicted numbers of landslides and landslide-prone areas agree well with the observations.  

4.2 Identification of landslide-affected urban areas 

Applying the terrain matching strategy, the performance of the machine learning-powered landslide 

mobility forecasting model can be significantly improved from less than 0.4 to higher than 0.7, even 

though a very simple neural network is adopted (Ju et al., 2022). The proposed machine learning model 

can not only provide rapid regional runout path predictions like a statistical model does, but also 

reasonably incorporate complex geographic characteristics along landslide traces and 3-D terrain reality 

like in a 3-D numerical simulation. 

Figure 8: Predicted landslide-affected areas in the Mid-Levels 

With the developed prediction model of landslide runout paths, it is possible to identify potential 

landslide-affected urban areas and high-risk landslide-bearing elements. Consider the Mid-Levels at the 

foot of Victoria Peak on Hong Kong Island as an example (Figure 8). The Mid-Levels is a landslide-

prone area with various buildings densely packed near the steep natural hillsides. One of the most severe 

rainstorms hitting the Mid-Levels in history is the storm on 16-21 August 2005, with the maximum 

rolling 4-h and 24-h rainfall amounts being 171 mm and 567.5 mm, respectively. Integrated with 

landslide susceptibility mapping results, 2238 landslide travel paths can be predicted in the investigated 

area, among which 1268 landslides rush into the urban area, as shown in Figure 8. About 72% of these 

landslides stop within 30 m to the mountain foot, and only a few travel a long distance (e.g., 0.5% over 

90 m to the mountain foot). The building at the lower right corner of Figure 8 is at the highest risk of 

being attacked by several potential landslides and demands necessary slope stabilization measures. In 

fact, an 8 m high concrete retaining wall (11SW-A/R 162) has been constructed between the building 

and the mountain for safety reasons.  
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4.3 Future application to prompt quantitative risk assessment 

The ultimate application target of the machine learning-powered landslide forecasting models will be 

the prompt quantitative risk assessment (He et al., 2023), which requires real-time predictions of both 

landslide initiation (i.e., occurrence probability) and mobility (i.e., spatial impact probability) under a 

full probabilistic framework (Figure 9).  

Figure 9: Example of quantitative landslide risk assessment 

The current statistical version only assesses the risk of natural terrain landslides. Considering that man-

made slope failures occurring in densely populated urban regions (e.g., Hong Kong Island and 

Kowloon) will pose much higher risk than natural terrain landslides occurring in sparsely populated 

remote regions (e.g., Lantau Island), it is crucial to assess the risk of man-made slope failures 

simultaneously. As demonstrated in the previous two applications, machine learning models have 

already achieved the initiation prediction of both natural terrain landslides and man-made slope failures. 

Future work should focus on the mobility prediction of man-made slope failures. A possible solution is 

to discretize man-made slopes into the same cells as the natural terrain does. By this means, the post-

failure movement of man-made slopes can be modelled in a consistent probabilistic manner. 

The GEO is operating two landslide early warning systems for man-made slope failures and natural 

terrain landslides separately. Due to the difference in safety levels and covering areas of these two types 

of landslides, different quantity-based warning criteria are adopted, namely 15 for man-made slope 
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failures and [500, 1000, 2000] for natural terrain landslides. The landslide risk as an integration of both 

occurrence probability and consequence would be a better indicator than the landslide quantity to unify 

man-made slope failures and natural terrain landslides. The next-generation risk-informed landslide 

early warning system will benefit a lot from machine learning-powered landslide forecasting.  

5 Conclusions 

Machine learning-related landslide studies stay on landslide susceptibility mapping for decades. 

Moving towards the prediction of landslide occurrence and movement, the time-unknown issue and 

terrain-unmatched issue should be addressed primarily. For such a purpose, this study proposes two 

novel machine learning strategies of probabilistic modelling and terrain matching for forecasting 

landslide initiation and mobility, respectively. It is found that even simple machine learning algorithms 

can have significant improvements than conventional statistical methods, as long as well-designed task-

specific machine learning strategies can be developed.  

Hong Kong is taken as an example to demonstrate the capacity of city-scale landslide forecasting using 

machine learning. The spatio-temporal evolution of both man-made slope failures and natural terrain 

landslides in a rainstorm can be well predicted using machine learning models, which can provide a 

powerful real-time decision-making tool for landslide early warning and risk management. 
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