2-Shortest and Strong Shortest Path Union Cover for Networks

Santiagu Theresal^{*1} and S. Arul Amirtha Raja²

¹Department of Mathematics, Auxilium College of Arts and Science for Women, India

²Department of Mathematics, St. Joseph's College of Engineering, OMR, Chenni-600 119, India *Corresponding author: santhia.teresa@gmail.com

ABSTRACT

Interconnection networks play a key role in the design and implementation of communicationnetworks and the recent advent of optic technology add more design problems. In general, aninterconnection network may be modelled by a simple graph whose nodes represent components of the network and whose links represent physical communication links. Let G = (V, E) be a graph. Strong shortest path union cover $S \subseteq V(G)$ is defined as for all $e \in E(G)$, there exists $u \in S$ such that elies on unique fixed shortest path u - v where $v \in V(G)$. Strong Shortest path Union covering number of a graph is the minimum cardinality among all strong shortest path union cover of G and it is denoted by $SSPC_{U}(G)$. The strong shortest path cover problem is to cover every edge of a known graph representing a network by the strong unique shortest paths from a subset of vertices in the graph. In this paper, we determine the 2-shortest path and strong shortest path union cover for Enhancedhypercube network $Q_{n,2}$, Augumented hypercube network AQ_n , and Crossed cube network CQ_n .

Keywords: Shortest paths union cover, Strong shortest paths union cover, Networks

