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A B S T R A C T  

Streamflow data obtained from the stream-gauge stations usually comprises of an ample volume of 

outliers. Anomaly detection is a requisite step in streamflow monitoring and analysis, especially in the 

context of water resources management, planning and flood risk studies. This study suggests a hybrid 

deep-learning anomaly detection method that combines an autoencoder and a long-short-term memory 

(LSTM) network. Multiple LSTM cells that collaborate with one another to understand the long-term 

dependencies of the data in a time series sequence make up the LSTM network. Based on the 

reconstruction error of the autoencoder's decoding phase, anomaly identification is accomplished. The 

applicability of the proposed method is demonstrated by considering the streamflow data (from 1985 

to 2015) of Thumpamon streamgauge station of Greater Pamba River basin, Kerala. The hybrid 

framework exhibits promising results after computing the accuracy, precision, recall and the F1-Scores 

values as 99.51%, 100%, 89.89% and 94.73% respectively. 
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1 Introduction 

Streamflow data is an essential prerequisite for water resources planning and management studies. The 

streamflow data collected from the gauge stations typically involves a large number of abnormal values. It 

may be due to the improper instrument exposure or installment, errors occurred during the recording and 

errors that occurred in the processing stage. These outliers should be removed in order to ensure high 

quality streamflow data for any further analysis. 

An Anomaly Detection is a step in data-mining that pinpoint observations that depart from a dataset’s 

regular behavior. This is considered to be an essential process since anomalous data can indicate changes 

in the typical behavior of the data points [1]. The breadth of outlier detection on time series data has been 

the subject of a significant amount of earlier work. 

Detecting anomalies based on automated techniques are targeted on automatically recognizing the unusual 

patterns that do not hold on to the anticipated behavior of the systems under consideration [2]. There are 

various studies based on statistical and machine learning algorithms in this regard [3]. Numerous studies 

rely on supervised learning technique where the labelled data is used for training the algorithm. 

Unsupervised machine learning algorithms contrastingly, have proven to be successful in various anomaly 

detection applications [4], [5]. 

One such unsupervised technique deals with the usage of autoencoders for outlier detection. Autoencoders 

are a form of deep neural networks that employ non-linear dimensionality reduction to learn representations 

of the data [6]. It is more efficacious to train several layers with an autoencoder and is convenient when the 

data problems are complex and non-linear in nature. Autoencoders basically comprises of two different 

phases: encoding phase used to lessen the dimensionality of the input data and the decoding phase aims at 

reconstructing the data back by reducing the reconstruction error, which measures the difference between 

the original data and its reconstruction [7]. 

In this article, we propose a hybrid deep learning model for detecting anomalous observations in the 
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streamflow dataset based on the idea of long-term dependencies that occur in data samples. This model 

combines the capabilities of long short-term memory (LSTM) and Autoencoder (AE). The result of the 

hybrid framework is compared with that of the simple autoencoder technique. As far as we know, no earlier 

research has utilized the LSTM Autoencoder technology for the anomaly identification of streamflow data. 

2 Materials and Methods 

2.1 Datasets 

The study was carried out using the streamflow data of Thumpamon streamgauge station of Greater Pamba 

River basin, Kerala, spanning within a time period of 30 years (1985-2015) (collected from WRIS), to detect 

the anomalies present in the selected dataset. The streamflow data (in m3/s) obtained for 25 years from the 

stream gauge station is plotted as in Figure 1. 

Figure 1: Streamflow time series of Thumpamon for the period of 1985-2015 

2.2 Network Architecture 

The autoencoder architecture involves an encoder phase which converts the input data into its compressed 

form and a decoder phase, where the reconstruction of the actual data is done. The reconstruction inaccuracy 

of the decoding step serves as the foundation for anomaly detection. The proposed hybrid deep learning 

model combines the LSTM network with the autoencoder for this purpose. 

2.2.1 LSTM 

LSTM networks can be described as a variant of Recurrent Neural Network (RNN) which exhibits the ability 

to recall the long-term dependencies within the input data. A basic LSTM network, depicted in Figure 2, is 

comprised of a cell and input, output and forget gates. The three gates control the flow of information into 

and out of the cell, and the cell remembers the values of the data points passed for all necessary time steps. 

kt= σ(Pkxt + Mkht−1 + nf)       (1)  

it = σ(Pixt + I−1 + ni)        (2)  

Ct = tanh(Pcxt + Mcht−1 + nc)        (3)  

ct = kt∗ ct−1 + it∗ Ct          (4)  

0t = σ(Poxt + It−1 + n0)         (5)  

ht = 0t∗tanh(ct)         (6)  

The weights of the input entering various gates are P and M. The gates are: input gate (it), input modulate 

gate (Ct), forget gate (kt), and output gate (0t). n is bias vectors, ct is cell state, and ht is hidden state. Each 

of these controllers controls the amount of information that is sent to the following state and the amount 
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that is received from the preceding loop. 

Figure 2: Architecture of Long-Short Term memory Network 

2.2.2 Autoencoder 

To learn effective coding of unlabeled data, an autoencoder is employed. By teaching the neural network 

to exclude extraneous data (often referred to as "noise"), it learns a representation for an input dataset. An 

input layer, an output layer, and multiple hidden layers make up a conventional autoencoder. The 

autoencoder working can be represented as in Figure 3. 

Figure 3: Architecture of Autoencoder 

The encoding phase of the autoencoder results in the systematic reduction of complexity of the input data 

by multiple layers of a neural network. After this dimensionality reduction, the latter step involves the 

decoding or reconstruction phase. The decoding phase is just the reversal of the stage before. The 

compressed representation of the actual data is reconstructed back with a similar network structure. The 

optimal output from the autoencoder is a nearby depiction of the actual input. The anomalies present in 

the actual data can be determined from the reconstruction loss, which is computed using the deviation of 

reconstructed values from the original data. 

2.3 Simple Autoencoder 

The first stage of this model deals with the creation of a single fully-connected neural layer as encoder and 

as decoder phase and compile the model with Optimizer, Loss and Evaluation Metrics. The loss function 

used here depends on the mean-squared error between the output and the input, which is termed as the 
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Reconstruction Loss. It penalizes the network for reconstructing the series different from the input. After 

that, the model has to be fit with the test data. 

2.4 LSTM - Autoencoder 

The LSTM-Autoencoder that has been proposed makes use of the potentialities of both the LSTM and the 

Autoencoder, which assembles LSTM networks on the encoder and decoder stages. The high-dimensional 

input data sequence is obtained by the encoder as a fixed-size vector. The data handled by the former phase 

maintains dependencies between various data points in a time-series sequence while diminishing the high 

dimensional input vector depiction into low dimensional reduction using the memory cells of LSTM. 

Reconstruction error rates are used to define a threshold by the decoder LSTM in order to obtain the fixed-

size input sequence within the compressed delineation of the input data. The actual dataset's abnormalities 

are found using this threshold. 

3 Results and Discussion 

The effectiveness of the simple and hybrid models for streamflow anomaly identification was examined in 

this section. The datasets of streamflow collected for a period of 30 years is divided into training phase 

(70%) and testing phase (30%), by considering the previous literatures. 

The trends of the loss (mean squared error) at various intervals obtained for the hybrid model are shown 

in Figure 4 below. The training loss measures the error rate of the model during training. From the figure, 

the training loss is found to be stabilized after around 3 epochs. The validation loss shows least value at the 

third epoch. This fits nicely, and our suggested model performs admirably. 

Figure 4: Training and validation loss 

The next step deals with the detection of threshold value for identifying the anomalies present in the dataset. 

The reconstruction loss—the distinction between the original and rebuilt time series data—is used to 

determine it.The Mean Absolute Error (MAE) loss of the training dataset is determined and the maximum 

value among them is taken as the reconstruction error threshold. Each data point's recalculated loss is 

compared to the reconstruction error threshold, and data points with values higher than this are regarded 

as anomalies. The reconstruction error threshold obtained for the considered dataset in the hybrid LSTM-

Autoencoder is around 0.915. The Figure 5 depicts the Loss - Threshold curve in which the data points 

with reconstruction loss values greater than the threshold are considered as the anomalies. 
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Figure 5: Reconstruction Loss vs Threshold Curve 

The threshold value determined from the simple autoencoder is less than that obtained from the hybrid 

model (Threshold – 0.7). The anomaly points are determined afterwards by considering the threshold 

values. The total number of test samples = 3287 (Daily data from Januray 1, 2007 to December 31, 2015). 

The most deviated values are determined using binary segmentation multiple change point analysis using 

Rstudio, to be used as the base data for accuracy analysis of the autoencoder models. The change point 

analysis indicates 156 data points as anomalies and remaining 3131 points as normal samples. The simple 

autoencoder model established 108 data points and the hybrid model exhibits 140 points as anomalies. 

Among the 3131 standard data representations, both models accurately detected all 3131 normal data points 

(100% of the time). The Figure 6 and 7 depicts the obtained anomaly data points for simple and hybrid 

autoencoder models respectively. 

Figure 6: Anomaly data points obtained from Simple Autoencoder 
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Figure 7: Anomaly data points obtained from Hybrid LSTM Autoencoder 

The Figure 8 represents the confusion matrix obtained for simple and hybrid autoencoder models. The 

accuracy, recall, precision and F1- scores of simple and hybrid models are determined and are represented 

using a radar plot as in Figure 9. The accuracy obtained for simple and hybrid models are 98.5% and 99.52% 

respectively. The precision values obtained for both the models reach 100%. The recall and F1-Scores 

obtained are 89.89% , 69.23% and 94.73%, 81.8% respectively for hybrid and simple autoencoders. The 

evaluation's overall findings demonstrate that the suggested model outperforms the basic autoencoder 

model in terms of accuracy in detecting abnormalities. On the basis of the entire time series testing dataset, 

this conclusion was reached. 

Figure 8: Confusion Matrix obtained for Simple and Hybrid LSTM Autoencoder  
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Figure 9: Radar Plot for Model Performance Evaluation 

4 Conclusions 

This paper focuses on anomaly detection of streamflow dataset, which experiences only a few researches 

in the past. In this study, a hybrid LSTM Autoencoder model is established for streamflow anomaly 

detection. In the hybrid model, two separate LSTM networks—each of which has multiple LSTM units—

are taken into account as the encoder and decoder and have the capacity to recognise long-term 

correlational relationships that are present in a time series sequence. In addition to maintaining the long-

term dependencies established by the LSTM encoder and providing outputs to match the input through 

the LSTM decoder, autoencoder is regarded to generate encoded features of the input series representation. 

The trained model's maximum reconstruction loss is used as a threshold and is passed into the anomaly 

detector. Each data sample from the testing set is flagged as an anomaly by the anomaly detector if the 

reformation loss result is higher than the selected limit. The model evaluation results represent that the 

hybrid model is efficient for anomaly detection than the simple autoencoders. The further scope of the 

study deals with the inclusion of stacked or bidirectional LSTM for autoencoder working.  
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