Development of Real-time Detection System of Microplastic in Tap Water

Jeong-Jae Kim¹; Kyoung-Min Park¹; Ingyu Lee²; Hyunook Kim²

¹Department of Mechanical Engineering, Hanbat National University ²Department of Environmental Engineering, University of Seoul *Corresponding Author

Abstract

Recently, the detection and removal of micro-plastics in the purification plant has received large attention due to the detection of foreign materials from tap water in Korea. Most detection systems for micro-plastics are conducting through sampling process. A system that detects micro-plastics in the flowing water in real-time without sampling has not been developed so far. Therefore, the goal of the present study was to establish a real-time detection system to determine the presence and the location information of microplastics in tap water. The real-time detection and measurement experiments were performed on polystyrene (PS) and high-density polyethylene (HDPE) with different characteristics such as size, shape, and density. Experiments were conducted at relatively low flow velocity (3 - 5 cm/s) similar to the condition in water purification plant. As a result, the possibility of real-time detection of micro-plastics with D = 44, which was intended to be carried out in this study, was sufficiently verified. After acquiring the image, it was possible to improve the accuracy by analyzing the images of micro-plastics based on deep learning algorithm and suggested a way to cope with the detection of micro-plastics in the water purification plant.

Acknowledgement

This work was supported by the Korea Environment Industry & Technology Institute (KEITI) through the Measurement and Risk Assessment Program for Management of Microplastics Project (2020003110008) and Post Plastic. This is a specialized program of the Graduate School funded by the Korea Ministry of Environment (MOE).

Biography

Jeong Jae Kim is an Assistant Professor in the department of Mechanical Engineering at Hanbat National University. His research interests are fluid mechanics, and environmental pollutions including micro-plastics and particulate matters. He is currently conducting a research to develop a detection technology for air and water pollutants by applying the flow visualization technique.