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A BST R AC T  

Malaria is a severe global health problem, with an estimated 241 million malaria infections and 627,000 

malaria deaths globally in 2020. Hundreds of millions of blood films are examined annually for malaria, 

which includes manually counting parasites and infected red blood cells by a trained microscopist. 

Segmented red blood cells play an important role in applying deep learning for malaria diagnosis. 

However, traditional segmentation and separation of single red blood cells is challenging and requires 

much human intervention. Therefore, instead of segmented red blood cells, the performance of deep 

learning models can be studied using bounded cell images. Various object detection architectures are 

studied in detecting red blood cells from thin blood smear images. However, there is a lack of study on 

the performance of Yolov4 to detect infected cells in thin blood smear images. This study aims to 

evaluate the performance of Yolov4 in detecting red blood cells infected by four types of malaria 

species and integrate a separate algorithm to automatically crop the infected cells. Different types of 

malaria images are used to study if the model can still detect cells infected by various malaria parasites 

and from multiple stages of infection despite their morphology differences. The MP-IDB malaria 

datasets were used in the experiments. The performance of the Yolov4 model was evaluated by 

partitioning the train and test dataset by 90/10 and 80/20. The partitioning was done on datasets with 

and without augmentations. The results show that upon training Yolov4 model can detect infected cells 

despite their morphological differences. Model 4 with 80/20 dataset partition and augmentation is 

chosen as the best model with the best mAP of 93.43%.  

Keywords: malaria, Yolov4  

1 Introduction 

Malaria is a severe and sometimes fatal disease caused by a Plasmodium parasite that commonly infects the 

Anopheles mosquito, feeding on humans. Malaria is an ultimate global health problem, with an estimated 

241 million malaria infections and 627,000 malaria deaths globally in 2020 (WHO, 2021). Accurate parasite 

counts are essential for malaria diagnosis and testing for drug resistance, measuring drug effectiveness, and 

classifying disease severity. However, microscopic diagnostics is not standardized and depends heavily on 

the experience and skill of the microscopist. It is common for microscopists in low-resource settings to 

work in isolation, with no rigorous system to ensure their skills and, thus, diagnostic quality. This leads to 

incorrect diagnostic decisions in the field, prompting efforts to perform malaria diagnoses automatically. 

Since the wide acceptance of deep learning, the importance of large, annotated data image repositories for 

https://aijr.org/about/policies/copyright/
https://doi.org/10.21467/proceedings.141
https://aijr.org/
https://doi.org/10.21467/proceedings.141.1


Sukumarran et al., AIJR Proceedings, 130-137, 2022 

 

 

 

 

Proceedings of International Technical Postgraduate Conference 2022 

131 

training is now widely understood, leading to the incredible support of data acquisition efforts. Given these 

developments, automated microscopy is in the race toward a cheap, simple, and reliable method for 

diagnosing malaria. 

Among the previous works, such as Liang et al. (2017) used active contour to segment the cells, Dong et 

al. (2017) segmented cells using thresholding techniques and morphological operations, while their cell 

separation depends upon Hough Circle transform, and  Rajaraman et al. (2019) applied level-set algorithm 

for RBC segmentation. Morphological operations for cell segmentation have been widely used (Arshad et 

al., 2022; Dong et al., 2017; G.Gopakumar, 2018; Molina et al., 2021). The typical steps involve applying 

histogram equalization for contrast improvement, Otsu's thresholding to binarize and separate the cells 

from the background and mathematical morphologies to remove noise and unwanted pixels. The watershed 

algorithm is famously used to segment each cell from a clumped of cells.  

Traditional segmentation methods require much human intervention, and the parameters of these 

approaches may change in various stages of malaria infection as the morphology of the species varies in 

different stages. However, instead of traditional methods, deep learning object detection architectures can 

be used to detect the cells of interest upon training automatically. Such as, Zhao et al. (2020) used a deep 

learning object detection algorithm known as SSD300 to detect all the red blood cells from thin blood 

smear images. They trained their model using segmented NIH cells but cross-validated it with the bounded 

cell images. Alternatively, a deep learning model could be trained on bounded images. So far, the 

performance of object detection algorithms such as Faster R-CNN [5], Mask R-CNN [6], Yolov2[10] and 

SSD300[11] have been studied on thin smear.  

Yolov4 architecture was mainly fine-tuned in previous studies to detect malaria parasites from thick blood 

smear images (Abdurahman et al., 2021). Yolov4 was introduced in 2020, surpassing the other object 

detectors in speed and accuracy. It is yet to be employed on thin blood smear images. 

In this study, we investigated Yolov4's ability to detect only infected cells from thin blood smear images. 

In contrast to the prior research, the images used in this study depict infections caused by all malaria species 

at various stages of infection. This is to determine if the object detection architecture can recognize infected 

cells despite morphological changes across species and the infection phase. In addition, a different 

algorithm will be incorporated into the final model to automatically crop and store the infected cells that 

have been detected. The crop-infected cells can be employed in future applications, such as forwarding 

them to a second deep learning model to identify them based on their malarial species or infection stage.  

2 Materials and Methods 

2.1 Data acquisition  

The publicly available dataset of 210 thin blood smear images from MP-IDB 

(https://github.com/andrealoddo/MP-IDB-The-Malaria-Parasite-Image-Database-for-Image-

Processing-and-Analysis) was used in this study. The following dataset provides thin smear images infected 

by all malaria species from various stages of infection. Data annotation was performed only on the infected 

cells based on the ground truth provided in the form of binary masks.  

2.2 Yolov4 hyperparameters setting 

A custom model configuration of Yolov4 was performed according to the number of classes to be detected. 

The hyperparameters used were the batch size of 64, subdivisions 16, maximum batch 6000, steps of 

4800,5400, a learning rate of 0.001, and filter of 18 in three convolutional layers before the Yolo layers. In 
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this experiment, four models were trained and tested, models 1 and 2 at 90/10 data partition and models 3 

and 4 at 80/20 data partition. For models 2 and 4, data augmentation was performed where the training set 

was augmented to 1000 images.  

2.3 Cropping algorithm integration 

The final model was saved in the form of TensorFlow model files. A separate algorithm was then 

implemented in python to automatically crop and save only the cells detected by the model.  

2.4 Performance Evaluation 

The results were evaluated with four performance metrics: recall rate, precision, F1-score, and mean average 

precision (mAP). Recall rate is the intolerance of the model toward the false negative (1). Precision is the 

intolerance of the model toward false positives (2) 

          (1)                                                     (2) 

F1-score represents the harmonic mean of recall and precision. It gives equal weight to recall and precision 

(3). Mean average precision is the mean of the average precision of all the classes detected by the object 

detection model (4). 

2.  (3)                                 (4)  

         APk= AP of class k, n= number of classes  

3 Results and Discussion 

Table 1: Performance metrics of model 1 at 90/10 data partition without augmentation 

Epochs Recall (%) Precision (%) F1-score (%) mAP (%) 

1000 92 79 85 87.25 

2000 93 88 90 94.37 

3000 92 93 93 93.68 

4000 89 95 92 92.74 

5000 91 94 92 93.86 

6000 91 94 92 93.42 

 

Table 2: Performance metrics of model 2 at 90/10 data partition with augmentation 

Epochs Recall (%) Precision (%) F1-score (%) mAP (%) 

1000 80 82 81 83.50 

2000 82 86 84 87.82 
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3000 83 85 84 87.34 

4000 89 86 88 89.80 

5000 82 87 84 87.93 

6000 86 84 85 87.14 

 

Table 3: Performance metrics of model 3 at 80/20 data partition without augmentation 

Epochs Recall (%) Precision (%) F1-score (%) mAP (%) 

1000 93 74 83 88.93 

2000 90 77 83 87.48 

3000 87 82 85 87.31 

4000 84 84 84 87.34 

Best 88 82 85 89.93 

 

Table 4: Performance metrics of model 4 at 80/20 data partition with augmentation 

Epochs Recall (%) Precision (%) F1-score (%) mAP (%) 

1000 92 74 82 89.08 

2000 93 82 88 92.08 

3000 87 85 86 87.63 

4000 95 83 89 93.43 

 

Various performance metric was obtained to evaluate the performance of the models. A high recall rate is 

crucial to ensure that the model has a lesser chance of letting slip the infected cells as it is important to flag 

them. Since only one class is being detected, the mean average precision will be the average precision of the 

detected class. Like F1-score, average precision incorporates precision and recall, but average precision is 

finding the area under the precision-recall curve. Average precision summarizes the precision-recall curve. 

Therefore, the mAP will be used to evaluate the performance of the models. 

Based on the results, at a partition of 90/10, the best mAP obtained is 93.68% at 3000 epochs. Following 

the 3000 epochs, the model starts to overfit as it struggles to give more than 1 percent of the current mAP. 

Data augmentation was performed to study whether the model's performance improved and whether 

overfitting could be prevented or delayed. The augmentation was done so that there is an equal number of 

images in all stages of infection to reduce the model's bias. The augmentations were flipping, rotation at 

various angles, zoom in and out and distortions. Based on Table 2, it can be seen the mAP in every epoch 

decreases as compared to model 1, and the best mAP is 89.80%. However, the overfitting was eventually 
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delayed. The augmentation was performed on the whole blood smear image, which also contained healthy 

red blood cells and other cells and stains. Multiplying the images multiplies all the other cells, stains, and 

information in the images, such as noise. This may have influenced the features the model learns. 

The models achieved satisfactory results from 90/10 partitions with and without data augmentation. Figure 

1 shows a few examples of results on the test images. Although model 1 achieves higher mAP than model 

2, both models fairly detect the infected cells but with different confidence. Based on the detections checked 

individually on the test images, the models fairly detect most of the cells infected from the schizont, 

trophozoite, and gametocyte stages. Typically, there are more infected cells in the ring stage in a single 

blood smear image; although the model does not detect all those infected cells, they fairly detect most of 

them (Figure 1).  

For better confidence in the model's performance, training was again conducted at the partition of 80/20. 

From the results in Table 3, model 3 starts to overfit faster than the previous models; therefore, the training 

was halted after 4000 epochs. It should be considered that when a partition of 80/20 is done, the number 

of training images decreases compared to the 90/10 partition, but the number of test images increases. This 

may have eventually caused an early overfit. Nevertheless, the model achieved the best mAP of 89.93% in 

more test images with fewer train images. To obtain a more robust model, the training was again conducted 

using augmented images at a partition of 80/20. 

A few adjustments to the annotations were made for better results with the augmented data. Such as, the 

cells that are at the edge of the image and were cut off are not included in the annotations. Besides that, the 

images from the same patient were separated to either be in the train or the test images to prevent stain 

leakage [9] and make the model more robust.  

The distortion augmentation method was removed as it might change the cell morphologies and complicate 

learning. Moreover, the size of the bounding boxes was adjusted by a few pixels to avoid fitting on the cells 

of interest and for a better intersection of the ground truth and predicted bounding boxes. Based on Table 

4, model 4 manages to achieve the best and highest mAP of 93.43%. From Figure 2, model 4 can detect a 

few of the cells not detected by model 3. This can explain the highest recall rate of 95% achieved by model 

4. Model 4 is selected as the best and final model as a partition of 80/20 gives better confidence in the 

model. With data augmentation, it is trained with more training sets, increasing its robustness and reducing 

its bias.  

To our knowledge, no comparable literature evaluated the performance of Yolov4 on thin blood smear 

images. The final Yolov4 model achieves a better result than other object detection algorithms, such as the 

SSD300 in a study by Zhao et al. (2020) and the Yolov2 model (Yang et al., 2020) on thin blood smear 

images. In most previous studies, deep learning models are trained and tested on images of the same malaria 

species. Although this study uses an object detection algorithm, based on the results, it can be determined 

that upon training, other deep learning models can also classify cells as infected despite the differences in 

features respective to malaria species and stages of infection. 
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a(ii) 
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Figure 1: Example results on the same test images from model 1(a) and model 2(b) 

 

c(i) 

 

d(i) 
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c(ii) 
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Figure 2: Examples of results on the same test images of 80/20 partition with and without augmentation, model 

3(c) and model 4(d) 

4 Conclusions 

In this study, Yolov4 was implemented to identify the infected cells from thin blood smear images. The 

study shows that upon training, the model can detect infected cells despite the species and stages of 

infection, although they have different morphologies. The object detection architecture with an integrated 

cropping algorithm provides a faster automatic detection and cropping of the infected cells. The cropped 

bounded cell images can facilitate further applications of deep learning in malaria diagnosis, such as for 

classification according to species or stages of infection. The limitation of the study is the limited availability 

of datasets from all species and stages of infection.  

5 Declarations 

5.1 Study Limitations 

Lack of thin blood smear images.  
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