Embedding of a Signed Graph with Property *P* in a Graceful Signed Graph with Property *P*

Jessica Pereira^{1*}, Tarkeshwar Singh², S. Arumugam³

¹School of Physical and Applied Sciences, Goa University, Goa-403206, India ²Department of Mathematics, Birla Institute of Technology and Science, Pilani, Goa Campus

³National Centre for Advanced Research in Discrete Mathematics, Kalasalingam University, Anand Nagar, Krishnankoil-626 126, Tamil Nadu, India *Corresponding Author

ABSTRACT

Let S = (V, E, s) be a signed graph with |V| = p, |E| = q and let $s: E \to \{+, -\}$ be a function which assigns a sign + or - to each edge. For any injection $f: V \to \{0, l, ..., q\}$, the induced edge labelling g_f is defined by $g_f(uv) = s(uv)|f(u)-f(v)|$. The function f is said to be a graceful labelling of S, if $g_f(E^+) = \{1, 2, ..., |E^+|\}$ and $g_f(E^-) = \{-1, -2, ..., -|E^-|\}$ where E^+ and E^- denote the set of all positive and negative edges of S respectively. A signed graph that admits graceful labelling is called a graceful signed graph. In this paper, we prove that a signed graph S having property P can be embedded in a graceful signed graph S' having property P when P denotes the property being: triangle-free, planar, Eulerian, or Hamiltonian. We have also proved that if S is a connected graph and S_1 , S_2 , ... S_k is its decomposition into edge-induced subgraphs with $f: V \to N \cup \{0\}$ an injection having maximum vertex label $M_{S(f)}$, such that the edge-induced function g_f assigns distinct labels to edges of S_i , $1 \le i \le k$. Then S can be embedded as an induced subgraph of k-hypergraceful eulerian graph S' with k-hypergraceful labelling h such that $M_{S'}(h) \le 2^{k+1}(M_{S(f)} + 4)-7$.

Keywords: Signed graph, Graceful signed graph, Graceful embedding.

© 2022 Copyright held by the author(s). Published by AIJR Publisher in "Book of Abstracts of the 2nd International Conference on Applied Mathematics and Computational Sciences (ICAMCS-2022), 12–14 October 2022. Organized by the DIT University, Uttarakhand, India.

DOI: 10.21467/abstracts.138 ISBN: 978-81-957605-2-7 (eBook)