Modeling and Analysis of Porous Medium Equations: Existence-uniqueness Results and Asymptotics

Dr. G. P. Raja Sekhar

Professor, Department of Mathematics & Dean, Faculty of Sciences, Indian Institute of Technology, Kharagpur, India

ABSTRACT

We introduce basic governing equations for fluid flow inside porous medium applications. We focus with specific attention along our to Brinkman-Forchheimer equation that involves a non-linear term. We first define a boundary value problem of flow inside a bounded domain and show the corresponding weak formulation. We then convert the same into equivalent fixed-point problem and establish the existence and uniqueness results via Banach contraction theorem. We then consider a fully developed flow corresponding to the anisotropic Brinkman-Forchheimer extended Darcy's equation in a channel packed with porous medium. We discuss existence and uniqueness results using the Browder-Minty theorem. Complemented with the existence and uniqueness analysis, we present an asymptotic solution by taking Darcy number as the perturbed parameter. For a high Darcy number, the corresponding problem is a regular perturbation expansion. For low Darcy number, the problem of interest is a singular perturbation. We use matched asymptotic expansion to treat this case. More generally, we obtained an approximate solution for the non-linear problem, which is uniformly valid irrespective of the porous medium parameter values. The analysis presented serves a dual purpose by providing the existence and uniqueness of the anisotropic non-linear Brinkman-Forchheimer extended Darcy's equation and provides a more robust approximate solution. We discuss specific results within the context of flow inside endothelial glycocalyx layer.

Keywords: Banach contraction, endothelial glycocalyx layer, Browder-Minty theorem.

^{© 2022} Copyright held by the author(s). Published by AIJR Publisher in "Book of Abstracts of the 2nd International Conference on Applied Mathematics and Computational Sciences (ICAMCS-2022), 12–14 October 2022. Organized by the DIT University, Uttarakhand, India.