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A B S T R A C T  

Recently, the Geotechnical Engineering Office has initiated a pilot study on data-driven landslide 

susceptibility analysis (LSA) using a machine learning (ML) approach. A study area covering about 

one-fifth of the total natural hillside area of Hong Kong on and around the Lantau Island was 

considered. Three common tree-type ML classifiers: Decision Tree, Random Forest and XGBoost 

have been used. Conditioning factors (or features) including rainfall, geological and topography-

related features were considered. In the study, the domain knowledge on natural terrain landslides 

in Hong Kong were critically incorporated into the susceptibility models through feature 

engineering to ensure that the resulted models are physically meaningful. In addition, an approach 

proposed to resolve the serious data imbalance problem, which is common in LSA, will be 

highlighted. Under this approach, the predicted probabilities of the positive class (i.e., landslide) 

can also be taken as a proxy to the landslide probability. This paper reports the methodology and 

key findings of this pilot study. The approach can be extended to cover other ML algorithms and 

features, and to a territory-wide scale with a view to enhancing the resolution and accuracy of the 

current susceptibility model of natural hillsides in Hong Kong. 
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1. Introduction 

Much of the natural terrain in Hong Kong is steeply sloping with a surface mantle of weak saprolite, 

residual soil or colluvial deposits. These hillsides are susceptible to shallow rain-induced landslides 

with a typical depth of less than 3m. As part of its slope safety management system, the Geotechnical 

Engineering Office (GEO) has been conducting technical development work pertaining to landslide 

hazards. Landslide susceptibility analysis (LSA) has been one of the key areas of technical development 

work for improving our understanding of the nature and characteristics of natural terrain hillsides, their 

potential risk and approaches for risk management (Wong, 2009).  

Landslide susceptibility refers to the spatial likelihood of a landslide occurring in an area on the 

basis of local terrain conditions (Brabb, 1984). While previous studies on landslide susceptibility for 

Hong Kong were mainly based on the data-driven analysis using conventional statistical approach (e.g. 

Evans & King, 1998; Ko & Lo, 2016), a few recent studies were based on the machine learning (ML) 

approach (e.g. Dai & Lee, 2002; Ng et al., 2021; Wang et al., 2021). The ML techniques are becoming 

popular to model complex landslide problems and starting to demonstrate promising the predictive 

performance compared to conventional methods (Tehrani et al., 2021). In light of this, the GEO carried 

out a pilot study to explore the potential of applying ML on natural terrain LSA. With reference to Ko 

& Lo (2016), landslides and conditioning factors covering the same period from year 1985 to 2008 were 

adopted. Under this pilot study, a study area covering about one-fifth of the total natural terrain areas 

in Hong Kong has been considered. Although it is a regional study, the methodology has been developed 

with a view to extending it to a territory-wide study. This paper presents the preliminary findings of this 

ML-based natural terrain LSA using three different ML algorithms. 
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2. Previous Statistical-Based Natural Terrain Lsa for Hong Kong 

The first territory-wide natural terrain LSA of Hong Kong conducted by the GEO is reported in 

Evans & King (1998). The territory was catergorised into five classes of susceptibility, with slope angle 

(13 classes) and geology (19 groups) accounted as the conditioning factors for landslide occurrence. 

The susceptibility classes were differentiated by one order of magnitude in terms of landslide frequency 

(i.e., 0.1 to 1 no. of landslide/km2/year). This resolution was considered limited and insufficient in 

differentiating more vulnerable areas for risk management applications (Wong, 2003; Wong, 2009). 

Also, the effect of rainfall, a key contributory factor to landslide occurrence, was not considered in this 

study. 

An updated territory-wide natural terrain susceptibility model was developed by Ko & Lo (2016) 

taking into account the effect of rainfall, together with the consideration of the enhanced landslide in 

the Enhanced Natural Terrain Landslide Inventory (ENTLI), and enhanced topography data from the 

territory-wide multi-return airborne Light Detection and Ranging (LiDAR) survey undertaken in 2010 

(2010 LiDAR data) respectively. The three conditioning factors considered: slope gradient, solid 

geology and rainfall intensity were categorized into eight, three and six classes respectively and 

correlated to landslide susceptibility using conventional statistical approach. The analysis resulted in an 

improved resolution spanning across four to five orders of magnitude in terms of landslide density 

(no./km2) (see Figure 1). In particular, natural terrain landslides were found to be highly sensitive to rainfall 

(two to three orders of magnitude between the lowest and highest rainfall classes, for one slope angle class). 

They further predicted the number of landslides that may occur in an anticipated rainfall event and 

generated a possible landslide frequency map (Ko and Lo, 2018). Based on the work by Ko & Lo 

(2016), a pilot study has been undertaken to explore the potential of applying ML on natural terrain 

LSA, taking advantage of the powerful performance of ML in data analytics. The following sections 

present the methodology and key findings of this ML-based study.  

Figure 1: Year-based Rainfall Landslide Correlation by Ko & Lo (2016) 

3. Machine Learning Algorithms 

Since the first use of ML in the field of landslide studies in early to mid-2000s, a wide range of 

conventional ML and deep learning (e.g., neural networks) algorithms have been developed for 

classification and regression purposes. They have been used in various landslide studies yet there is still 

no consensus on which algorithm is the ‘best’ suited for predicting landslide prone areas (Dou et al., 

2020). In this pilot study, ML algorithms which suit our purposes and the adopted approach of the study 

were identified based on the key factors below.  

(i) interpretability of the algorithms, 

(ii) balance between bias and variances, 

(iii) suitability for handling correlated conditioning factors, and 

(iv) computational efficiency. 
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Interpretability refers how easy is it to explain the results from the input data by a ML model, or 

to understand the patterns that models use to link to the training datasets (Ma et al., 2021). It is essential 

for detecting bias and debugging of the ML models. We also considered it is important for us to be able 

to explain the model predictions in combination with our professional knowledge (domain knowledge) 

on landslide occurrence. Balance between bias and variances refers whether the algorithm is able to 

form a predictive model that is generalized enough to give consistent yet accurate forward predictions. 

Algorithms which are prone to overfitting should be avoided. The ability of an algorithm to handle 

correlated conditioning factors, or more commonly referred as features in ML terminology, provide 

additional flexibility in selection of features and is thus more preferable. Lastly, computational 

efficiency is related to the time spent on the LSA and is taken as one of the considerations as well.  

With reference to the above considerations, three tree-based ML algorithms, namely: Decision 

Tree, Random Forst and XGBoost were chosen. Decision Tree algorithm (Breiman et al., 1984) is 

known as one of the most commonly used algorithms in the studies of similar nature. Despite it is a less 

robust algorithm and sensitive to the predictive data, it is adopted for its computational efficiency and 

high interpretability to facilitate the understanding of the other two algorithms. Random forest 

(Breiman, 2001) and XGBoost (Chen & Guestrin, 2016) are tree-based ensemble learning algorithms. 

With different ensemble methods adopted, their performance has been much enhanced in terms of 

robustness and generalizability. While tree-based ensemble algorithms are widely recognized to achieve 

excellent results compared to other ML algorithms, Ma et al. (2021) in particular remarked that Random 

Forest algorithm offers robust performance for accurate susceptibility mapping with only a small 

number of adjustments required before training the model. On the other hand, the performance of 

XGBoost has been widely recognized in a number of ML and data mining challenges (e.g., Kaggle 

competitions). XGBoost is one of the Gradient Boosting algorithms. While Gradient Boosting become 

popular very recently such that they are less routinely used in LSA, it has been reported to be able to 

improve the accuracies of ML models for landslide susceptibility analyses (Merghadi et al., 2020).  

The architecture of the adopted algorithms are not elaborated in this paper. Readers may refer to 

the original papers of the algorithms for more details.  

4. Modelling Approach and Feature Engineering 

4.1. Modelling Approach 

The LSA in this pilot study was treated as a grid-based binary classification problem in ML. In other 

words, given the set of condition factors possessed by a grid, the ML classifier predicts the landslide 

occurrence within the cell as a binary dependent variable comprising positive value (with landslide) or 

negative value (without landslide) only. The same approach was adopted by similar studies in Hong 

Kong (Dai & Lee, 2001; Ng et al., 2021; Wang et al., 2021). A grid size of 5m x 5m was adopted as in 

the previous work by Ko & Lo (2016). Reichenbach et al. (2018) also remarked that grid-based 

approach is the most common type of mapping units for LSA modelling. 

One of the major challenges commonly encountered in applying binary classification in LSA is the 

sample bias due to the highly imbalance dataset, as there is always a scarce proportion of positive value 

grids within a study area. The ratio of positive value to negative value grids the dataset for this pilot 

study area is in the order of 1:30,000. Such imbalances can cause a model to be biased towards 

classifying the susceptible area as safe (i.e., negative value), jeopardizing the accuracy of the minority 

class prediction (the class of interest in our study). With a view to improving the binary classification 

result of the minority class, data-level techniques which refer to selecting a 1:1 ratio (or other ratio as 

appropriate) of landslide data points to non-landslide data points using different sampling techniques 

were commonly adopted (Dai & Lee, 2001; Ng et al., 2021; Ma et al., 2021). However, there is concern 

that sampling of data would bias the predicted probabilities of a classifier, resulting in a significantly 
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high proportion of false positive when applying the classifier trained and tested using sampled datasets 

to an unsampled domain. This manifest as a substantial over-prediction of landslide potential when 

practically applying such models to forward prediction of the landslide potential of the entire study 

areas.  

In view of the above, this pilot study adopted a different ML approach to handle an imbalance 

dataset (referred as the adopted approach in this paper). Under this approach, while the analysis was 

still handled as a binary classification problem, no data sampling was applied to avoid biasing the 

predicted class probabilities of a classifier. The issue of sample bias was overcome by taking the 

‘predicted class probabilities’ (e.g. the probability of having a landslide), instead of the ‘predicted 

classes’ (i.e. with or without landslide), as the key prediction result obtained from the ML classifier. 

Since the predicted probabilities of the classifier were not biased by data sampling, the predicted 

probability of the positive class [P(+ve)] could be taken as a proxy to the landslide probability directly. 

In addition, the information loss in model training can be minimized as the entire dataset except those 

saved for validation and testing can be utilised without sampling. Similar approach was adopted in Xiao 

& Zhang (2021) in forecasting the number of man-made slope failures in response to rainstorms with 

machine learning technique for slope-based analysis. 

4.2. Feature Engineering 

The nature and number of features adopted in ML modelling vary significantly among different 

literatures on LSA. While the introduction of redundant or irrelevant features may create noise that 

decreases the overall predictive capability of the models, no universal agreement on the principle of 

selecting relevant features among the literatures could be found. In particular, some of the features 

adopted in the literatures lack physical relevance with landslide occurrence. As a result, it is preferable 

to identify appropriate features through understanding their roles on landslide occurrence and the 

adoption of conventional engineering which involves a substantial amount of prior knowledge 

(Reichenbach et al., 2018; Ma et al., 2021). 

In view of the above, a framework which ensures the quality, and the statistical and physical 

relevance of the features was adopted in selecting proper features for inclusion in this pilot study. 

4.2.1. The Feature Selection Framework 

Feature selection is the process of reducing the dimensionality of input variables and creating summary 

measures to encapsulate the information in the entire dataset. Domain knowledge would be used in the 

process to extract the characteristics and attributes from raw data. Under the feature selection 

framework, potential features were assessed against the criteria given in Table 1. In particular, while 

ML belongs to algorithmic modelling which provides prediction based on the available data only and 

treat the data mechanism as an unknown (Tehrani et al., 2021), we emphasised on the inclusion of our 

domain knowledge for the development of physically meaningful ML models. 

Table 1 Feature Selection Criteria 

Criterion Consideration 

(i) quality of the feature 

datasets 

• good spatial and temporal coverage, resolution and accuracy of the feature 

data 

• crucial to ensuring the performances of ML models are not adversely 

affected by the quality of their training data 

• avoid underrepresentation due to scarcity of the available data 
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(ii) statistical correlation 

between the feature and 

landslide occurrence 

• prevent the introduction of less relevant or redundant features to the ML 

model, as they create noise that decreases the overall predictive capability 

of the models 

• facilitate understanding of the data structure 

• aid the data preprocessing by revealing under representative data (e.g. the 

response of the hillsides under heavy rainfall with a low probability of 

occurrence, characteristics of the terrain covering a small land area) 

• assessed by means of descriptive analytics (see Table 2) 

(iii) consistency of the 

statistical correlation 

with domain knowledge 

on landslide 

susceptibility 

• allows the incorporation of domain knowledge, past experience and expert 

judgment on landslide susceptibility to the ML model by reviewing the 

consistency of the correlation observed in Criterion (ii) against the existing 

engineering knowledge on landslide occurrence 

A feature selection priority matrix (the matrix) shown in Figure 2 was created for assessment 

against Criteria (ii) and (iii) in this pilot study. Potential features that fall within Quadrant 1 would have 

higher priority to be included in the susceptibility models, follow by those falling in Quadrant 2. 

Features found in Quadrants 3 and 4 reveal statistical correlations that do not tally with the existing 

engineering knowledge and should be well considered and tested with due consideration of the data 

representativeness before inclusion.  

Further elaborations on the application of the matrix is given based on three topography-related 

example features: slope gradient, profile curvature and aspect. The vertical axis of the matrix is 

determined with reference to Table 2, which summarises the correlations of the example features with 

the density of past landslide occurrences (Landslide, no./km2) and their distribution of area. Territory-

wide data of Hong Kong instead of the study area solely were used with a view to extend the pilot study 

to territory-wide in future.  

Strong statistical correlation with Landslide increases by about five times from 30o to 45o is observed 

from slope gradient. The increase of Landslide with slope gradient is attributable to its effects on the 

balance of stabilizing and destabilizing forces, and thus the overall stability of a slope. Areas steeper 

than 45o possess lower Landslide as they are more rocky or composed of denser soil, having a higher 

stabilizing force. This feature is thus placed near the high ends of both the vertical and horizontal axes 

in the matrix. 

Figure 2: Feature Selection Priority Matrix 

Areas with greater magnitude of profile curvature are about four times more susceptible to 

landslide, illustrating a relatively strong statistical correlation. As profile curvature refers the rate of 

change of slope gradient along the vertical directions, it can be considered as a proxy to the break in 

slope which is landslide related (Ho & Roberts, 2016). This feature is thus placed in Quadrant 1 of the 

matrix, at a less extreme position as compared to slope gradient. 

Aspect shows certain degree of statistical correlation with landslide, with the south or southeast 

aspects being two times more susceptible than the north. Nonetheless, this correlation cannot be justified 
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based on domain knowledge. As such, aspect falls within Quadrant 4 and is not considered in this pilot 

study. 

Table 2 Area and Landslide Density Distribution of Example Features 

4.2.2.  The Selected Features 

Table 3 summarizes the features identified based on the feature selection framework. As can be seen, 

compared with the three basic features considered by Ko & Lo (2016) (i.e. rainfall, lithology, slope 

gradient), this study considered three additional features (i.e. plan curvature, profile curvature and 

upslope catchment area). These features are briefly described as follows. 

Table 3: Summary of Features Considered in this Study 

Feature Rainfall Lithology Slope 

gradient 

Plan 

Curvature 

Profile 

Curvature 

Upslope 

Catchment Area 

Ko & Lo 

(2016) 

   - - - 

This Study       

4.2.2.1. Rainfall 

The natural terrain landslides in Hong Kong were characterized as rainfall-induced. Since 1980s, the 

GEO and the Hong Kong Observatory (HKO) have installed a total of more than 120 automatic rain 

gauges across Hong Kong, with an average density of about one rain gauge per 10 km2. In particular, 

the GEO rain gauges (90 nos.) capture real-time data which would be transmitted to the servers 

automatically at up to 1-minute intervals. This network of rain gauges provides a reasonably good 

spatial and temporal coverage of rainfall data across Hong Kong. 

Year-based rainfall intensities quantified in terms of normalised maximum rolling rainfall 

(NMRR) was adopted in this pilot study. NMRR is determined by normalizing the maximum rolling 

rainfall as recorded at a location with the mean annual rainfall of the same location of a 30-year period 

from year 1977 to 2006. The normalisation of rainfall intensity is a common approach to better 

characterise extremity or anomalies of the rainfall (Ko, 2005; Ko & Lo, 2016). The statistical correlation 

of 24-hour and 4-& 24-hour NMRR with landslide susceptibility was thoroughly studied in Ko & Lo 

(2016), which concluded that landslide occurrence is highly sensitive to rainfall with a strong statistical 

correlation up to five orders of magnitude observed. With reference to Ko & Lo (2016), rolling durations 

of 24-hour was considered in this pilot study.  

4.2.2.2. Topography-related Features 

Topography-related features refer to the list of features which could be determined with reference to 

the topography of the study area. A total of four topography-related features (i.e. slope gradient, plan 

Slope Gradient

(deg)

Area (%) Landslide 

(no./km
2
)

Profile 

Curvature

Area (%) Landslide 

(no./km
2
)

Aspect Area (%) Landslide 

(no./km
2
)

0 - 15 12.5% 1.20 ≤ -7 2.1% 77.75 N 12.2% 20.19

15 - 20 12.0% 2.19 -7 - -5 2.7% 61.65 NE 12.3% 25.75

20 - 25 17.4% 4.61 -5 - -3 7.5% 43.08 E 12.7% 31.35

25 - 30 22.6% 12.57 -3 - -1 20.7% 25.06 SE 12.6% 38.63

30 - 35 19.3% 42.21 -1 - 1 36.1% 17.29 S 12.5% 39.05

35 - 40 10.2% 102.36 1 - 3 18.7% 27.32 SW 12.5% 34.88

40 - 45 4.1% 141.68 3 - 5 6.3% 52.28 W 12.6% 30.82

45 - 90 2.0% 95.36 5 - 7 2.6% 76.90 NW 12.5% 25.37

≥ 7 3.4% 58.08
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curvature, profile curvature and upslope catchment area) were identified for incorporation in this pilot 

study. The data of these features obtained from the 2010 LiDAR data.  The 0.5m x 0.5m digital 

terrain model (DTM) developed was first resampled to form a 5m x 5m DTM, and then converted into 

the feature dataset using ArcGIS applications. Given LiDAR data shows promising results in producing 

high resolution DTM that can ‘see through’ vegetation, topography-related feature dataset derived from 

territory-wide LiDAR survey results are of good quality fulfilling feature selection Criterion (i). 

Statistical correlations of two to six folds are observed from these features. In terms of physical 

significance, slope gradient plays a significant role on the overall stability of a slope. Plan and profile 

curvatures are related to the mass-wasting and runoff processes. The upslope catchment area indicates 

the amount of flow that would be concentrated to the grid in event of precipitation.  

4.2.2.3.  Lithology 

Lithology has been adopted in both generations of the territory-wide natural terrain landslide 

susceptibility analysis by Evans & King (1998) and Ko & Lo (2016). The lithology is related to the 

engineering properties of the soils derived from the parent rocks and is thus considered to be physically 

relevant to the landslide potential. The lithology of the study area was categorised into three main groups 

(namely intrusive, volcanic, and sedimentary) with reference to the 1:20,000 solid and superficial 

geology maps of Hong Kong (https://www.cedd.gov.hk/eng/publications/geo/hong-kong-geological-

survey/index.html). The same categorization was adopted in Ko & Lo (2016).  

4.2.3. The Landslide Data 

In this pilot study, landslide data as recorded in the ENTLI was adopted. The ENTLI provides year-

based landslide information which were collected through the interpretation of available high-flight (≥ 

2,400m altitude) and low-flight aerial photos (< 2,400m altitude). As compared with the reported 

landslides or field-mapped landslides which are commonly adopted in other LSA, landslide data based 

on ENTLI provided a more complete picture of landslide occurrence over the study area which is not 

biased by the accessibility of the landslide locations. On the other hand, the temporal resolution of the 

data was limited by the frequencies of aerial photo-taking and interpretation. Year-based LSA was 

considered as a result. In the dataset, grids containing the crowns of the landslides were identified as 

the landslide area and denoted as ‘1’; remaining grids were considered as non-landsliding area and 

denoted as ‘0’.  

5. Machine Learning-Based Natural Terrain Landslide Susceptibility Analysis 

5.1. The Pilot Study Area 

The pilot study area comprises the natural terrain areas of the Lantau Island, as well as those of the 

adjacent outlying islands as indicated in Figure 3. It is 130 km2 by area, over 30% of the study area is 

steeper than 30o, with the elevation varied from sea level to 930m above sea level. It is mainly underlain 

by volcanic and intrusive rock, with a small area of sedimentary rock. There were over 6,100 recent 

natural terrain landslides recorded within the study area in the ENTLI. The study area has experienced 

intense rainfall in 1993 and 2008, with the 24-hour maximum rolling rainfall of over 500 mm and 600 

mm respectively. The rainstorm on 7 June 2008 alone has resulted in over 2,500 natural terrain 

landslides. Given the high variabilities in topography-related and rainfall data available within the pilot 

study area, as well as its rich history of past landslides, it is considered as an ideal study area for this 

pilot study.  
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Figure 3: Extent of the Study Area and Recent Landslides in Enhanced Natural Terrain Landslide Inventory 

(ENTLI) 

5.2. The Workflow 

The workflow of this ML-based analysis mainly comprises data preprocessing and resampling, model 

construction and performance evaluation stages.  

5.2.1. Data Preprocessing and Resampling 

With a grid-based approach adopted in this pilot study, the entire pilot study area discretized into about 

5.2 million numbers of 5m x 5m grids, each of which contains 24 years (year 1985 to 2008) of rainfall 

and landslide data on top of the geological and topography-related features. Under the adopted 

approach, most of the data in grids were used for either the construction or the evaluation of the ML 

models. Given the amount of data to be handled, the model construction and evaluation works of this 

pilot study were carried out on web service platform using python programming language. 

Data preprocessing refers to the preparation of data for model construction. Key actions include 

the cleansing of data, the encoding of categorical data, as well as the resampling of data for model 

training and evaluation. Data cleansing forms part of the feature engineering works, which involves the 

removal of null or undesirable data from the dataset to ensure only representative and unbiased data are 

fed into the models. For instance, data associated with rainfall intensities beyond the range of 0.025 to 

0.3 for 24-hour NMRR were removed since only a limited portion of the pilot study area had 

encountered these extreme rainfall intensities in rare events, such that the associated data would not be 

representative enough for incorporation. Data points associated with the extreme values of plan and 

profile curvatures were discarded for similar reasons. The encoding of categorical data involved the 

lithological data only, with one-hot encoding adopted. 

The resampling of the dataset along with the workflow of this pilot study is illustrated in Figure 4, 

the dataset was resampled into training dataset, validation dataset and testing dataset. The testing dataset 

comprised 1) all the data from years 1993 and 2007, and 2) 10% of the data randomly selected from the 

remaining 22 years in a stratified manner. Stratified random sampling is a commonly adopted sampling 

technique in which the data is divided into smaller groups or strata and then randomly selected from 

each of the strata by the same proportion. The data were stratified based on landslide occurrences in 

this pilot study such that the ratio of landsliding to non-landsliding data in each of the dataset could be 

maintained.  

The two sets of testing data are referred as Testing Data 1 (TD1) and Testing Data 2 (TD2) 

respectively. While TD2 pertained the type of testing data commonly adopted in other similar studies, 
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TD1 comprised data that possess unseen rainfall patterns during the model construction such that it 

served as a more stringent test which tested the models’ ability in making forward predictions. Of note, 

the intensity of rainfall in year 1993 is one of the highest one among the 24 years, whilst that in year 

2007 is a moderate one. The remaining data served as training and validation datasets. 

 

Figure 4: Resampling of Data in the Pilot Study 

5.2.2. Model Construction 

Construction of the ML model mainly involves the optimization, or tuning, of the hyperparameters. 

Hyperparameters are parameters that control the learning process of a ML model, the optimal set of 

hyperparameters to be used varies by cases as it is dependent on the algorithm and dataset involved. 

Although some ML-based studies adopt the default values of hyperparameters, Tehrani et al. (2021) 

remarked that hyperparameter tuning plays a significant role on the performance and the predictive 

ability of a ML model. The tuning of hyperparameters is a process of trial and error, which can be done 

in either systematically (e.g grid search) or randomly. For each set of the hyperparameters considered 

in this pilot study, their performances were assessed using five-fold cross-validation. A five-fold cross 

validation involved the key steps below: 

(1) shuffling of dataset in a random manner 

(2) splitting of the shuffled dataset into nine groups in a stratified manner 

(3) from (2), select seven groups of the split data as training dataset to fit the model 

(4) evaluate the trained model using the remaining two groups of split data, i.e., the validation 

dataset, with reference to the area under the receiver operating characteristic (ROC) curve 

(5) repeat (3) and (4) for a total of five times 

Each of the analysis cases were trained and evaluated with the set of preprocessed data based on 

the same workflow. Scikit learn packages were used for the implementation of the Decision Tree and 

Random Forest algorithms, whereas the XGBoost package was adopted for the XGBoost algorithm. 

5.2.3. Performance Evaluation 

Performances of the ML models in this pilot study were evaluated using the Area Under Curve (AUC) 

of the receiver operating characteristic (ROC) curves (see Figure 5). An ROC curve plots the true 

positive rate (TPR) against the false positive rate (FPR) for different classification thresholds, such that 

the pre-determination of the threshold is not required. A higher ROC AUC value indicates a better 

performance of the model over the whole range of the classification threshold. This evaluation metric 

is chosen since it does not require a predetermined classification threshold, which is non-trivial given 

the modelling approach adopted in this pilot study, to define the splitting of the model predictions in 

binary classification. 
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Figure 5 Definition of ROC AUC and Confusion Matrix  

The ROC AUC of the ML models assessed based on the different data are summarised in Table 4. 

A set of ML models considering the features adopted in Ko & Lo (2016) only are also included as 

reference case. 

Table 4 ROC AUC of the Predictive Models 

Evaluation 

Data 
Training Data Testing Data 1 (TD1) Testing Data 2 (TD2) 

ML Algorithms 
Decisio

n Tree 

Rando

m 

Forest 

XGBoos

t 

Decisio

n Tree 

Rando

m 

Forest 

XGBoos

t 

Decisio

n Tree 

Rando

m 

Forest 

XGBoos

t 

 Pilot Study 0.9674 0.9965 0.9808 0.8764 0.9083 0.9149 0.9443 0.9670 0.9732 

Reference case 0.9571 0.9881 0.9660 0.8770 0.8836 0.8867 0.9499 0.9593 0.9627 

On top of the ROC AUC evaluation, Tehrani et al. (2021) suggested to further examine the 

accuracy of a ML model by validating the areal extent of each susceptibility class against the density 

distribution of landslides in the landslide inventory. A model is accurate when the landslide density 

ratio increases moving from low to high susceptibility classes, and when the high susceptibility classes 

cover small extent of areas only. Table 5 validates the XGBoost model which gives the highest ROC 

AUC for both TD1 and TD2 among the models tested as an illustration. The pilot study area is divided 

into eight groups based on the P(+ve) as predicted by the model in a log cycle. The (a) distribution of 

actual landslides from year 1985 to 2008 as recorded in the ENTLI, and the (b) areal distribution of the 

study area in each year is tabulated by group. The actual landslide density, Landslide, in each of the groups 

is calculated as dividing (a) by (b). 

Table 5 Distribution of Actual Landslide Occurrences and Area by Predicted P(+ve) 

Group I II III IV V VI VII VIII 

Predicted 

P(+ve) 

10-8-10-7 10-7-10-6 10-6-10-5 10-5-10-4 10-4-10-3 10-3-10-2 10-2-10-1 10-1-1 

Area (km2) 117.6 1486.8 1056.8 318.8 100.9 19.1 1.4 0.004 

(3.8%) (48%) (34%) (10%) (3.3%) (0.6%) (0.05%) (0.0001%

) 

Landslide no. 1 30 167 484 1268 1586 817 24 

(0.02%) (0.69%) (3.82%) (11.1%) (29.0%) (36.2%) (18.7%) (0.55%) 

Landslide 

(no./km2) 

0.009 0.020 0.158 1.518 12.57 83.09 564.3 5,962.7 

Actual P(+ve) * 2.13x10
-7 

5.04x10
-7 

3.95x10
-6 

3.80x10
-5 

3.14x10
-4 

2.08x10
-3 

1.41x10
-2 

1.49x10
-1 

*Actual P(+ve) refers the actual probability of landslide, which is the product of actual landslide density and grid 

size. 
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6. Discussion 

6.1. Accuracy 

Key observations from the performance evaluation results are summarised below. 

(a) The ROC AUC based on training data of all cases are over 96%, indicating that the ML models fit 

the training data very well. 

(b) The ROC AUC based on testing data TD1 and TD2 are over 87%. The maximum ROC AUC were 

up to 91.5% and 97.3% respectively for the XGBoost models. The ROC AUC based on TD1 is 

obviously lower than that based on TD2 for all of the cases as the former served as more stringent 

test on the models’ abilities in making forward predictions. All in all, the ROC AUC values 

achieved reveal that all of the ML models are able to make fairly accurate predictions. 

(c) XGBoost and Random Forest models perform better than Decision Tree models based on the 

testing data. The results are also shown in Table 4. As compared with the reference case, the 

introduction of additional features improved the performance of the ML models, the effect is more 

obvious when the models were tested with TD2.  

(d) In Table 4, about 85% (3,695 out of 4,377 nos.) of the landslides fall within 4% of area of the 

highest landslide susceptibility (Susceptibility Classes V to VIII), demonstrating that the ML 

model is giving fairly accurate susceptibility predictions. 

6.2. Predicted Probability vs Actual Probability 

Under the adopted approach, the predicted P(+ve) is directly taken as the predicted landslide probability. 

This section validates this assumption. Figure 6 plots the actual landslide probability [Actual P(+ve) in 

Table 5] of the pilot study area from year 1985 to 2008 by P(+ve) as predicted by the XGBoost model. 

A linear relationship with a gradient of unity is observed, indicating that the two quantities are close to 

each other. As such, the predicted P(+ve) of the ML model under the adopted approach provides a fairly 

realistic indication of, and can been taken as a proxy to, the predicted landslide probability for practical 

applications.  

Figure 6: Actual Landslide Probability by Positive Classification Scores (XGBoost model) 

6.3.  Spatial Resolution 

The spatial forecast of landslide susceptibility models is often presented as susceptibility maps. Each of 

the grids on the map represents the reclassified or calibrated landslide occurrence prediction of the 

location covered. Table 6 compares the range of the landslide probability of the entire pilot study area 

as predicted by the XGBoost model under rainfall intensities corresponding to the mean normalized 24-

hour NMRR intensities of 24-hour NMRR Classes I to V in Ko & Lo (2016). The range of the landslide 

probability based on an XGBoost model considering the three features adopted in Ko & Lo (2016) only 

is also included for reference (the reference model). With the additional topography-related features 
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considered in the former model, it differentiates the landslide susceptibility of terrain with a higher 

spatial resolution by two to three orders of magnitude for each of the rainfall intensity classes 

considered. 

Figure 7 shows an extract of the landslide susceptibility maps near the Tai O area as predicted by 

the reference model and the XGBoost model under a hypothetical constant rainfall scenario with 24-

hour NMRR Class IV to illustrate the difference. Again, the XGBoost model is able to distinguish 

landslide susceptibility with a much higher resolution as compared with FS1-24hr-XGB. 

Table 6 Range of Predicted Probability of the Pilot Study Area 

24hr NMRR Rainfall Class 

I 

Rainfall Class 

II 

Rainfall Class III Rainfall Class IV Rainfall Class 

V 

XGBoost 

Model 

Min 9.89 x 10-9 1.17 x 10-8 4.17 x 10-8 1.35 x 10-7 2.17 x 10-7 

Max 1.57 x 10-3 1.63 x 10-3 1.34 x 10-2 9.59 x 10-2 2.71 x 10-1 

Reference 

Model 

Min 2.12 x 10-7 2.54 x 10-7 6.35 x 10-7 3.45 x 10-6 9.61 x 10-6 

Max 2.04 x 10-5 3.36 x 10-5 2.10 x 10-4 2.68 x 10-3 2.56 x 10-3 

Figure 7 Landslide Susceptibility Map of the Tai O Area (24h-NMRR Class IV) 

7. Concluding Remarks 

Over the years GEO has been conducting technical development work on LSA for natural hillsides. 

This pilot study is carried out to explore the potential improvement to the existing landslide 

susceptibility model of natural terrain that can be brought about by the application of ML analysis. It is 

different from the other ML-based LSA on two aspects: 1) the adoption of a different modelling 

approach instead of data sampling to tackle the issue of acutely imbalanced dataset, and 2) the placing 

of emphasis on the incorporation of domain knowledge throughout entire workflow of the study.  

The adopted modelling approach is proven to work fairly well, with the ML models giving accurate 

susceptibility predictions which can be taken as a proxy to landslide probability. ML-models allow a 

systematic way to include additional features for LSA. The results of the study show that the resolution 

of the susceptibility map is enhanced by two to three orders of magnitude upon the introduction of three 

critically assessed additional features. The degree of improvement to the spatial resolution of the 

landslide susceptibility map is similar for the range of rainfall intensity considered.   

However, a fine balance should be struck between the predictive performance and the 

interpretability of the model. While being powerful, the ML algorithms learn the association between 

landslide occurrences and the set of features in various manner without considerations on the physical 

mechanism of slope failure behind. As such, the use of ML does not guarantee better susceptibility 

models that is physically meaningful unless it is applied with the input of sound professional knowledge. 

In this pilot study, we have demonstrated the introduction of domain knowledge to machine learn-based 

models through critical feature engineering works, proper selection of suitable algorithms, and detailed 

assessment of the model performances. 
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As a pilot study, the conducted analyses focused on the group of the most promising features and 

algorithms, based on rainfall and landslide data up to year 2008 only. Before the study is expanded to a 

territory-wide scale, we believe the models can be further enhanced on various aspects. Suitable 

additional features fulfilling the same feature selection framework will be introduced in a step-wise 

manner with a view to maximizing the amount of information gain while maintaining the feature space 

of the dataset in a reasonable dimension. Additional ML algorithms may also be considered. As this 

pilot study considered rainfall and landslide data up to year 2008 only, the dataset will be expanded to 

cover data of nearer years for testing of the ML models. Retraining of the ML models will also be 

carried out if necessary, especially when data associated with high rainfall intensity become available. 

Rainfall intensity characterised in different rolling durations may be considered. Scale effect and effect 

of post-landslide topography may also be explored.  
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