Structural Investigations Studies of Antimony-Tungsten and Sodium MetaphosphateGlass Systems with NaPO₃ as Additive

Guesmia Nesrine, Hamzaoui Majda, Beghdadi Lina

Department of physics /laboratory of photonic physics and nanomaterials multifunctional, University of Biskra, Algeria

*Corresponding author

ABSTRACT

 Sb_2O_3 -based heavy metal oxide glasses in the Sb_2O_3 - WO_3 -NaPO₃ ternary system were prepared. The physical properties and structural properties of the glasses have been investigated. From Raman and FTIR spectroscopy, the average cross-link density and number of network bonds per unit volume have been increased and discussed according to the create P-O-W strong linkage. The optical and structural properties of these glasses were found to be generally affected by the chemical changes in the glass composition due to the formation of linear chain of phosphate, that increase the connectivity and rigidity of the glass network. This work demonstrates that our glasses can be used for produce optical fiber application.

KEYWORDS: Sb₂O₃–WO₃–NaPO₃ ternary system, FTIR and Raman spectroscopy.

INTRODUCTION

Antimony oxide based glass has attracted extensive investigation in recent years; Since these glasses possess a large nonlinear optical susceptibility (χ 3) coefficient ¹ making them suitable for potential applications in nonlinear optical devices². Phosphate-based glasses are among the most researched for potential applications in optical fields because they exhibit unusual physical properties when compared to silicate glass. In order to improve the chemical durability of these NaPO₃ based bottles, the formulations should be improved by adding the selected elements ^{3, 4}. WO₃ are of particular interest and have undergone several studies since controlling the molar composition can lead to specific optical properties⁵. In this paper, we report on the physical and structural properties of glasses in the Sb₂O₃–WO₃–NaPO₃ ternary system.

RESULTS AND DISCUSSION

We calculated the \bar{n}_c and n_b of our SWN glasses by using the formula in⁶. The mean cross-link density, \bar{n}_{c} , is rise from 1.26 to 2, while the number of links per unit volume, n_{b} , is increased from 40,37 to 64.01×10^{21} cm⁻³. Since Antimony oxide is substituted with another glass former (NaPO₃), which has a higher cationic coordination number than Sb_2O_3 ($n_{f(NaPO3)} = 4$) and therefore creates a BO sites, the network has become stiffer and more linked in SWN glasses. With the increase in NaPO₃ concentration, both \overline{n}_c and n_b values an improve enhancement (Table 1).

Abstracts of 1st International Conference on Computational & Applied Physics (ICCAP'2021)

142

S.n°	ρ (g/cm³)	V _m (cm³/mol)	\overline{n}_c	n _b (×10 ²¹ cm ⁻³)
SWN10	5.256	50,722	1,26	40,37
SWN20	4.975	49,777	1,37	42,35
SWN30	4.827	47,376	1,47	45,77
SWN40	4.580	45,792	1,58	48,67
SWN50	4.325	44,109	1,68	51,89
SWN60	4.068	42,236	1,79	55,62
SWN70	3.725	41,037	1,89	58,71
SWN80	3.471	38,578	2,00	64,01

Table 1: Values of density (p), molar volume (V _m), average cross-link density ($ar{n}_c$) and number of bond	s
per unit volume (nb) of glasses in the SWN systems.	

The Raman spectra of the vitreous samples of system (90- x) Sb₂O₃-10WO₃-xNaPO₃ with x varying from 10 to 80, is shown in Fig.1.

In conclusion, the stiff vitreous of the SWN samples is responsible for the formation of W-O-W, P-O-W, and P-O-Sb bonds. As a result of the increased NaPO₃ and the glass transition temperature rising, the NBO atoms are reduced⁷.

CONCLUSION

In conclusion, the introduction of NaPO₃ into the SWN glass led to the formation of more linear chains, which reduced the number of NBOs and an increase in the structural compactness of these glasses. The structural studies of SWN glass supported this hypothesis by the formation of phosphate obeyed Q^2 with some modes of Q^1 and P-O-W linkage with the addition of NaPO₃. In general, these new glasses showed good behavior for producing optical fibers applications.

References

- 1. K. Terashima, T. Hashimoto, T. Uchino and T. Yoko, J. Ceram. Soc. Jpn. 104 (1996), p. 1008.
- 2. G. Poirier, M. Poulain and M. Poulain, J. Non-Cryst. Sol. 284 (2001), p. 117.
- 3. A. Mori, Y. Ohishi, M. Yamada, H. Ono, Y. Nishida, K. Oikawa and S. Sudo, Proc. OFC 97 (1997), p. I.
- 4. Ducel J.F, Videau J.J., 'Physical and chemical characterizations of sodium borophosphate glasses', Matter. Lett., 13 (1992) p271-274
- G Poirier, Y Messaddeq, S J L Ribeiro, M. Poulain, Non-Cryst. Solid 351 (4) (2005) 293. 5.
- 6. M.Çelikbilek, A.E.Ersundu, S.Aydin, J. Non-Cryst. Sol. 378 (2013) 247-253.
- 7. G. Poirier, Y. Messaddeq, S. J.L. Ribeiro, M. Poulain, J. Sol. State Chem, 178, (2005) 1533–1538.