Computational Determination of the Magneto-electronic Properties of Ce_{1-x}Cu_xO₂ (x=12.5%): Emerging Materials for **Spintronic Devices**

Aicha.BOUHLALA*, Sabah CHETTIBI

Laboratoire de Physique des Matériaux, Université 8mai 1945, Guelma, Algéria *Corresponding author

Introduction

Ceria (CeO₂) is used in a wide range of applications, ithas many interesting physical properties like its high oxygen storage capability; consequently, this material has a wide range of applications covering catalytic industry, superconductivity and solid oxide fuel cells [1,2]. It is a promising component in catalytic converters to reduce harmful emissions from automobile exhausts [3]. In the present work, we investigated the structural, electronic and magnetic properties of copper-doped CeO₂. The Cu transition metal is used as a dopant agent to persuade spin polarization in CeO₂ compound.

Simulation Methodology

Doping CeO_2 with transition metals is an effective way of tuning its properties. In the present work we have performed self-consistent ab-initio calculation using the full-potential linearized augmented plane-wave method (FP-LAPW), based on the density functional theory (DFT) as implemented in the Wien2k simulation code [4] to study the structural, electronic and magnetic properties of the compound Ce_{1-x}Cu_xO₂ (x=12.5%) fluorite type oxide and to explore the effects of dopant Cu in ceria. Theexchange correlation potential has been treated using the Perdew-Burke-Eenzerhof revised of solid (PBEsol).

Results and Discussion

In structural properties, the equilibrium lattice constant is observed for the compound, which exist within the value of 5.382 A°. To calculate the electronic nature of this compound, the band configuration of Ce1-xCuxO2 (x=12.5%) for both spin-up and spin-down configuration are simulated., and elucidates the semiconductor nature of material. It has indirect band gap for both spin channels asrepresented in figure 1 with the compound was observed to have a narrow band gap on the spindown configuration (0.162 eV) and band gap on the spin-up (2.067 eV). Hence, the doped atom Cu play a vital role in increasing the magnetic moments of the super cell and thevalue of the total magnetic moment is found to be 2.99438 µB.

Abstracts of 1st International Conference on Computational & Applied Physics (ICCAP'2021)

114

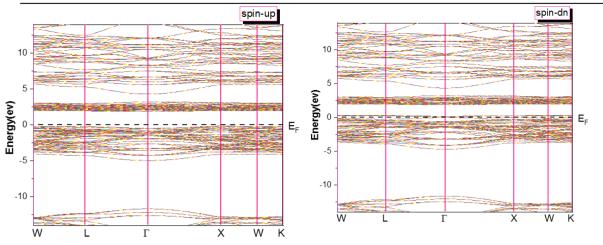


Fig. 1. Spin-polarized energy band plots of Cu-dopedCeO₂.

Conclusion

Structural, electronic and magnetic properties of $Ce_{1-x}Cu_xO_2$ (x=12.5%) examined by using the Wien2K code via DFT computations. Cu doping in CeO2 has confirmed the semiconductor ferromagnetism. The predicted results propose the compound could begood candidate for spintronic applications.

References

- [1] H Inaba, H Tagawa «Ceria-based solid electrolytes».Solid State Ion. 83 (1996).
- [2] M.S. Dresselhaus, I.L. Thomas. «Alternative energytechnologies». Nature 414 (2001) 332.
- [3] Y. Al-Douri, M. Gharaibeh, B.A. Albiss, A.H. Reshak. «Investigated stiffness of high performance superconductivity with nanoceria incorporated into polycrystalline magnesium diboride». Micro Nano Lett. 7(2012) 867.
- [4] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k: an Augmented Plane Wave Local Orbitals Program for Calculating Crystal Properties,Karlheinz Schwarz/Techn. Universit €at Wien, Austria, 2001.