004

# Green Synthesis and Characterization of Silver Nanoparticles

## Bessi Assia<sup>1\*</sup>, B.Laidi Baya<sup>2</sup>, Lakhal Noussaiba<sup>2</sup>

<sup>1</sup>Laboratoire de chimie physique moléculaire et macromoléculaire « LCPMM », Saad Dahleb University, Route Soumâa BP 270, Blida09000, Algeria

<sup>2</sup>Departement of chemistry, Saad Dahleb University, Route Soumâa BP 270, Blida 09000, Algeria \*Corresponding author

#### ABSTRACT

In this study, we have successfully green synthesized the silver nanoparticles (Ag NPs) using Lotus Corniculatus aqueous extract as the natural reducing and stabilizing agent, and aqueous AgNO<sub>3</sub> solution as a precursor using anew approach which attracts the interest of researchers worldwide. The as-prepared was characterized by Ultraviolet–Visible (UV–Vis) spectrophotometry, X-ray diffractometry (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy with energy dispersive X-ray (SEM with EDX).

### Introduction

Because of their size-dependent physical and chemical properties, nanoparticles are gaining attention [1]. Metallic silver nanoparticles (AgNPs) have received considerable attention for their potential application as a biocide in products ranging from facade paints to textiles, which is reflected in recent product inventories [2].

### Experimental

A volume of the extract (96 ml) is placed in a beaker, with stirring a solution of silver nitrate (1 mM) was added drop by drop, the obtained mixture has an orange-yellow color. The mixture was stirred overnight and it's color becomes brown. After that, a precipitate appeared. After precipitation of the solid phase, the latter is dried in an oven at a temperature of 80 ° C, in order to obtain a powder. This powder is calcined for 3 hours at a temperature of 400 ° C with a rise of 2 ° C /min.

### **Results and Discussion**

In order to confirm the composition and crystallinity of theobtained nanopowder, XRD was used for further detectionand analysis. As shown in figure-1, The synthesized Ag NPs were identified by XRD analysis as a cubic facecentered crystal system [3] and the average crystallite size size 11nm. The aqueous suspension of Ag NPs shows a UV–Vis absorption maxima of 390 nm demonstrating NPs formation. FT-IR analysis identified the presence of functional groups in the aqueous extract responsible for the production of stable AgNPs . As showing in figure-1 SEMshowed that the nanoparticles were spherical in shape withnanometric size.



Abstracts of 1<sup>st</sup> International Conference on Computational & Applied Physics (ICCAP'2021)



Figure-1:XRD pattern of Ag NPs.



Figure-2: Scanning Electron Micrograph ofbiosynthesized silver NPs

### Conclusion

These biosynthesized nanoparticles can be used multifield purpose medical applications.

### References

- [1].Gade, A., et al., *Biofabrication of silver nanoparticles by Opuntia ficus-indica: in vitro antibacterial activity and study of the mechanism involved in the synthesis.* Current Nanoscience, 2010. **6**(4): p. 370-375.
- [2].Kaegi, R., et al., *Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant*. Environmental science & technology, 2011. **45**(9): p.3902-3908.
- [3]. Fidel Martinez-Gutierrez, Peggy L Olive, Adriana Banuelos, Erasmo Orrantia, Nereyda Nino, Elpidio Morales Sanchez, Facundo Ruiz, Horacio Bach, and Yossef Av-Gay, "Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silverand titanium nanoparticles," Nanomedicine: Nanotechnology, Biology and Medicine 6 (5), 681-688