Understanding Structure and Properties of MgCl₂ Supported Ziegler-Natta Nanoclusters by DFT, Spectroscopy and Machine Learning: How Modelling Uncovers the Origin of Industrial Catalysis

Maddalena D'Amore^{1*}, Gentoku Takasao², Hiroki Chikuma², Toru Wada², Toshiaki Taniike^{2*}, Fabien Pascale³, and Anna Maria Ferrari¹

¹Dipartimento di Chimica, Università di Torino, Italy

²Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan

³Universitè de Lorraine - Nancy, CNRS, Laboratoire de Physique et Chimie Theoriques, Vandoeuvre-les Nancy *Corresponding author

ABSTRACT

MgCl₂-supported Ziegler-Natta (ZN) catalysts for olefin polymerization are intrinsicallycomplex multi-component systems, whose composition is the result of a long optimization process, mostly achieved in an empirical manner, either through a trial and error approach or through the more modern high-throughput screening of all the possible parameters. As it happens in many catalysts, nano-size and disorder are key features of ZN catalysts.ⁱ The structural and surface properties of MgCl₂ strongly depend on its activation that allows moving from the two crystalline polymorphs of MgCl₂ (α and β phases) to a high-surface-area material actually suitable for catalytic applications $(\delta$ -MgCl₂). MgCl₂ as a support material offers unique advantages in terms of abundance and distribution of stereo-specific highly active sitesⁱⁱ, together with the regulation of the morphology of the produced polymer. The presence of multiple components interacting with each other and their sensitivity to moisture are the main difficulties encountered in the attempt to investigate these systems from an experimental point of view, which opened routes to quantum mechanics to provide insights into those complex systems.

The seminal MgCl₂ models as obtained from molecular mechanics in the 1980s presented the (110) and (104) lateral surfaces as the putative surfaces for the adsorption of monomeric TiCl₄ and dimericspecies, respectively giving rise the first to a nonstereospecific site, whereas Ti_2Cl_8 dimers would form on the (104) surface adducts with stereospecific properties. However, recent DFT studies have claimed the crisis of those models,^{iii,iv} warning about the critical thermodynamic stability of Ti_xCl_{4x} species on flat and regular MgCl₂ surfaces and moving towards a much more complex morphology of the δ -MgCl₂ particles, where defective sites (such as steps, corners, and interfaces between two different surfaces) play a major role.

We recently investigated the effect of nanosize and structural disorder on the MgCl₂ support of Ziegler-Natta catalysts in terms of induced changes to its vibrational spectroscopic fingerprint by resorting to both periodic and cluster models. In particular, we adopted the inelastic neutron scattering(INS)^v technique as a method for the characterization of materials with a certain degree

Abstracts of 1st International Conference on Computational & Applied Physics (ICCAP'2021)

of defectivityand our investigation shows the central role of quantum mechanical simulations for a correct interpretation and valorization of the experimental INS spectra. Due to the nanosized nature of investigated catalysts, understanding the structure and properties of MgCl₂/TiCl₄ clusters is a key to uncover the origin of Ziegler-Natta catalysis. In particular, vibrational spectroscopy can sensitively probe the morphology and active species of MgCl₂/TiCl₄. We determined vibrational spectroscopic fingerprints of 50MgCl₂ and 50MgCl₂/3TiCl₄ which were obtained by non-empirical structure determination based on an evolutionary algorithm and DFT.^{vi} The adsorption of CO, TiCl₄ and Ti₂Cl₈ dimers was also modelled on each of coordinatively unsaturated Mg²⁺ sites available for binding including so-called defect sites, which are likely present at the surface of activated MgCl₂ nano- crystals and plausible sites for strong TiCl₄ species adsorption. Vibrational analysis (IR and Raman) on plausible models of TiCl₄/ MgCl₂ clusters revealed that IR response is useful to distinguish between the different ways of binding of TiCl₄ on different sites of adsorption, whereas Raman response provides a clear fingerprint of supported TiCl₄ species.

References

- 1. Zannetti, R.; Marega, C.; Marigo, A.; Martorana, A. J. Polym. Sci. Part B Polym. Phys. 1988, 26 (12), 2399– 2412.
- 2. Correa, A.; Piemontesi, F.; Morini, G. and Cavallo, L. Macromol. 2007, 40, 9181-9189.
- (a) Seth, M.; Margl, P.M.; Ziegler, T. Macromolecules 2002, 35, 7815. (b) D'Amore, M.; Credendino, R.; Budzelaar, P. H. M.; Causá, M.; Busico, V. J. Catal. 2012, 286, 103–110.
- (a) Boero, M.; Parrinello, M.; Terakura, K. J. Am. Chem. Soc. 1998, 120, 2746; (b) Boero, M.; Parrinello, M.; Huffer, S.; Weiss, H. J. Am. Chem. Soc. 2000, 122 ,501; (c) Boero, M; Parrinello, M.; Weiss, H.; Huffer, S.; J. Phys. Chem. A 2001,105, 5096.
- 5. D'Amore, M.; Piovano, A.; Vottero, E.; Rudic, S.; Groppo, E.; Bordiga, S.; Civalleri, B. ACS Appl. Nano Mater. 2020, 3, 11118-11128.
- D'Amore, M.*; Takasao, G.; Chikuma, H.; Wada, T.; Taniike*, T.; Pascale, F.and Ferrari, A.M.: J. Phys. Chem. C 2021, https://doi.org/10.1021/acs.jpcc.1c05712.