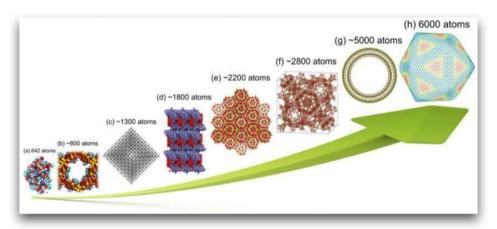
P06

Crystal17: A Modern Tool for Ab Initio Solid State Chemistry & Physics

S. Casassa


Theoretical Chemistry Group, Chemistry Department, University of Turin, Italy

*Corresponding author

ABSTRACT

The CRYSTAL *ab initio* package for solid state chemistry and physics is presented. First, the theoretical background is shortly recovered to allow for a better understanding of the limitations and peculiarity of the code. Then, some features are discussed with reference to some applications of both fundamental and technological interest. In particular:

- the massive parallel implementation of the code that allows for the modeling of realistic systems;
- the frequencies calculation complemented by the IR and Raman spectra reconstruction;
- the recent transport properties algorithm as applied to derive the thermoelectric performance of several materials (InGaN and Half-Heusler alloys, nanotubes, etc.)
- the new extension of the topological analysis of the charge density to f— and g— type basis functions which opens the way to the study of lanthanide and actinide compounds.

References

- 1. R. Dovesi et al., WIREs Comput. Mol. Sci. 8, e1360 (2018).
- 2. S. Casassa, A. Erba, J. Baima, R. Orlando, J. Comp. Chem. 36, 1940 (2015).
- 3. R. Orlando, M. Delle Piane, I. J. Bush, P. Ugliengo, M. Ferrabone, R. Dovesi, J. Comput.Chem. 33, 2276 (2012).
- 4. L. Maschio, B. Kirtman, S. Salustro, C. Zicovich-Wilson, R. Orlando, and R. Dovesi J. Phys.Chem. A 117, 11464 (2013)
- 5. A. Cossard, J.K. Desmarais, S. Casassa, C. Gatti and A. Erba, J. Phys. Chem. Lett. 12, 1862(2021).
- 6. H. C. Aroussi, N. L. Marana, F. Hamdache, R. Houaria, S. Bahlouli and S. Casassa, J. Phys.

