A Machine Learning Based Approach for Software Test Case
Selection

Victor Cheruiyot* and Baidya Nath Saha
Department of Mathematical and Physical Sciences, Concordia University of Edmonton, Alberta, TSB 4E4, Canada

* Corresponding author

doi:https://doi.org/10.21467/proceedings.115.25

ABSTRACT
Testing is conducted after developing each software to detect the defects which are then removed. However,

it is very difficult task to test a non-trivial software completely. Hence, it’s important to test the software
with important test cases. In this research, we developed a machine learning based software test case
selection strategy for regression testing. To develop the method, we first clean and preprocess the data. Then
we convet the categorical data to its numerical value. The we implement a natural language processing
to calculate bag of features for text feature such as testcase title. We evaluate different machine learning
models for test case selection. Experimental results demonstrate that machine learning based models can
aovid manual labour of the domain experts for test case selection.

Keywords: Software testing, Regression testing, Machine learning algorithms

I. INTRODUCTION

Software testing is a quality control activity which concentrates on detecting defects and then they are removed.
After completion of coding software products are subjected to testing with the help of different test cases. These
tests are essential and necessary to assess the effectiveness of the software. However, it is impossible to completely
test any nontrivial module or system becuase it suffers from both theoretical and practical perspectives. Theoretically
it suffers from halting problem: it’s impossible to write a program that tests whether every program halts in a finite
amount of time. Practically, executing all test cases involves enormous time and cost. Hence, it’s crucial to test a
subset of test cases which are important from user’s perspective based on the frequency of usage, criticality, and
probability of failure. This research work is limited to develop a machine learning based test case selection strateg
for regression testing. Regression testing retests software that has been changed or extended by new features during
software development.

In this research we carried out the following activities to develop a machine learning based test case selection
strategy. First, we clean the data by dropping irrelevant features. Then we preprocess the data by encoding categorical
features into its numerical values. After that we compute the bag of words for text data such as test case title, which
identify the important functionality for test case selection. All these features are fed into machine learning based
classifiers, such as logistic regression, Gaussian and multinomial naive Bayes. Experimental results demonstrate
that machine learning based algorithm can successfully detect important test cases and relieve the domain expert

from extensive manual labour for test case selection.

II. LITERATURE REVIEW
Xu et al. [1] developed a fuzzy expert systems which have the ability to emulate fuzzy human reasoning and
judgment processes and their system could detect critical test cases for system test by correlating knowledge repre-
sented by customer profile, analysis of past test case results, system failure rate, and change in system architecture.

They developed this fuzzy expert system for a large telecommunications system and obtained satisfactory results.

© 2021 Copyright held by the author(s). Published by AIJR Publisher in “Proceedings of Intelligent Computing and Technologies Conference”
(ICTCon2021) March 15th—16th, 2021. Jointly organized by Assam Science and Technology University (ASTU), and Central Institute of
Technology Kokrajhar (CITK).

Proceedings DOI: 10.21467/proceedings.115; Series: AIJR Proceedings; ISSN: 2582-3922; ISBN: 978-81-947843-5-7



https://doi.org/10.21467/proceedings.115.25
https://aijr.org/about/policies/copyright/
https://doi.org/10.21467/proceedings.115

Cheruiyot & Saha AIJR Proceedings, pp.186-189, 2021

(| Training data
Natural Language Processing
700

Models

Data with
Mathematical
features (
BoW, Defect
level etc)

Bag of
Words(BoW)

Bag of Words
(Bow.
Model

Logistic
regression
GaussianNB
MultinomiainB

Preprossed
Data

Features

Features

Releaseld
Type of Test case
TestCaseTitle

Performance
Analysis

) (oo ) (Accuracy,
_.[ Test data ] L gut‘;ue\ J Cﬁgﬂ?”

Releaseld
Type of Test case
TestCaseTitle

Error prone Test
Cases

Automation Status
Any Defect

FestCaseDeseription
Error prone Test Cases
Automation Status
Any Defect
HRABugHB
Bug-Deseription

Gt CommitMessage

\/\

Fig. 1: Flowchart illustrating machine learning based approach for software test case selection.

In another research work, Romano et al. [2] developed “SPIRITuS: a Simple Information Retrieval regresslon
Test Selection approach” which made a tradeoff between the number of selected test cases from the original test
suite and fault detection effectiveness. SPIRITuS was used for test case selection from a large experiment on 389
faulty versions of 14 open-source programs implemented in Java. In this experiment, SPIRITuS was able to select
significantly less number of test cases from other approaches at the expense of a slight reduction in fault detection

capability.

III. METHODOLOGY

Proposed Methodology is illustrated in Figure 1. The follwoing steps are taken to develop a machine learning
based software test case selection:
A. Dataset generation. Dataset for test set selection include i) Unique Identifier of Records, ii) Release Identification
number, iii) Type of Test Case: ’Sanity’ test cases are executed for Sanity of microservice and *API/Functionality’
test cases are executed for core functionality of microservice, iv) TestCaseTitle: Title or summary of test case, V)
TestCaseDescription, vi) Error Prone Test Cases: test cases which are covering high error prone area which must be
executed in every release, vii) Automation Status: whether test case is automated or not, viii) Any Defect: if there
is any defect in the release, ix) Bug ID, x) Bug Description, xi) GIT Commit Message: for a particular release, if
there are any commits in GIT, and xii) Target: binary classification of test case selection.
B. Data cleaning. After careful observation, based on the useful information available in the literature and
domain experts’ knowledges, we drop the following features from our experiments: Unique Identifier of Records,
TestCaseDescription, Bug ID, Bug Description, and GIT Commit Message. These features have insignificant
contribution to test case selection.
C. Data preprocessing. After dropping the irrelevant features, the dataset consists of one text feature, TestCaseTitle
and five categorical features, such as Release Identification number, Type of Test Case, Error Prone Test Cases,
Automation Status, and Any Defect, all of which are related to selection of test cases i.e. *Target’ variable. This
list of features will be utilized for training classifier models. However, all categorical variables will be converted
to their numerical values and text columns into sparse matrix of numerical features.
D. Natural Language Processing (NLP). We compute Bag of Words features from text data to train classifiers.
The following NLP based preprocessing tasks are carried out to convert text data of TestCaseTitle to numerical
features compatible with classifier models:

1) Remove unwanted words: Remove irrelevant characters and words such as special characters and numbers to

get clean text for further processing.

Proceedings of Intelligent Computing and Technologies Conference (ICTCon2021)
187



A Machine Learning Based Approach for Software Test Case Selection

Predicted
Positive Negative
Observed Postive TP (of TPs) FN (of FNs)
Negative FP (of FPs) TN (of TNs)

TABLE II: Confusion Matrix for binary classification

2) Uppercase to lowercase transformation: Transform all uppercase letters to lowercase because upper and lower
case letters have different ASCII codes.
3) Remove stopwords: Stopwords are usually the most common words in a language and are irrelevant in

predicting the response variables.
4) Stemming words: Stemming is the process of reducing words to their stem, base or root form. We use

stemming to reduce dimensions of Bag of Words features.

Bag of Words (BoW) describes the occurrence of words within a document which involves a vocabulary of
known words and a measure of the presence of known words. BoW ignores the order or structure of words in the
document and the model concerns only whether the known words occur in the document. We implemented BoW
using python CountVectorizer function available in scikit-learn library.Countvectorizer converts a collection of text
documents to a matrix of token counts.

E. Machine Learning Classifiers. We build three machine learning classifier models such as, logistic regression

model, Gaussian Naive Bayes, and Multinomial Naive Bayes.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

We divide the data into two parts: training and test. 70% data are used for training and the remaining 30% data

are used for testing the models.

Classifier Train accuracy | Test accuracy | F1 score
Regression 90.2 84.2 68.7
GaussianNB 80.4 78.2 70.1

MuitinomialNB 87.6 84.2 70.1

TABLE I: Train and test accracy and F1 score for different classifers

Table I demonstrates train and test accuracy and F1 score for different classifiers. Accuracy is calculated as the
number of all correct predictions divided by the total number of the dataset. The best accuracy is 1.0, whereas the

TP _ TP
TPoFP and Recall = TP+IN -

2*Precision*Recall
Precision+Recall

worst is 0.0. F1 score is defined as, F1 score = Precision =
In addition, we measure the performance of the classifers in terms of confusion matrix, which is formed from
the four outcomes produced as a result of binary classification. A binary classifier predicts all data instances of a

test dataset as either positive or negative. This classification (or prediction) produces four outcomes — true positive,

true negative, false positive and false negative which are defined as follows.

1) True positive (TP): correct positive prediction

2) False positive (FP): incorrect positive prediction

3) True negative (TN): correct negative prediction

4) False negative (FN): incorrect negative prediction

A confusion matrix for binary classification as demonstrated in Table II is a two by two table constructed by

counting of the number of the four outcomes of a binary classifier which are denoted as TP, FP, TN, and FN.

Proceedings DOI: 10.21467/proceedings.115

ISBN: 978-81-947843-5-7

188

Series: AIJR Proceedings
ISSN: 2582-3922


https://doi.org/10.21467/proceedings.115

Cheruiyot & Saha AIJR Proceedings, pp.186-189, 2021

Classification results for this experiment is represented by confusion matrix which is illustrated in Table III.
Results demonstrate that Machine Learning based approach can relieve the domain experts from manual labour for
test case selection.

Predicted
Positive Negative
Observed Postive 89,70,71 10,29,29
Negative 11,0,0 23,34,34

TABLE III: Confusion Matrix for different classifers

V. CONCLUSION
Regression testing is conducted after updating any software components. This research demonstrates that machine
learning-based approach can reduce the bias and manual labour of domain expert for software regression testing.
Prediction performance could be improved if large amount ofd training of data can be increased by adding more
releases data. In future, we would investigate the feature selection strategy for natural language processing to
optimize the whole software test case selection procedure.

REFERENCES
[1] Z. Xu, K. Gao, T. M. Khoshgoftaar, and N. Seliya, “System regression test planning with a fuzzy expert system,” Information Sciences,
vol. 259, pp. 532-543, 2014.
[2] S. Romano, G. Scanniello, G. Antoniol, and A. Marchetto, “Spiritus: A simple information retrieval regression test selection approach,”
Information and Software Technology, vol. 99, pp. 62-80, 2018.

Proceedings of Intelligent Computing and Technologies Conference (ICTCon2021)
189



	Introduction
	Literature Review
	Methodology
	Experimental Results and Discussions
	Conclusion
	References

