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ABSTRACT

Vedic Mathematics provides an interesting approach to modern computing applications by offering an edge
of time and space complexities over conventional techniques. Vedic Mathematics consists of sixteen sutras
and thirteen sub-sutras, to calculate problems revolving around arithmetic, algebra, geometry, calculus and
conics. These sutras are specific to the decimal number system, but this can be easily applied to binary
computations. This paper presented an optimised squaring technique using Karatsuba-Ofman Algorithm,
and without the use of Duplex property for reduced algorithmic complexity. This work also attempts
Taylor Series approximation of basic trigonometric and inverse trigonometric series. The advantage of this
proposed power series approximation technique is that it provides a lower absolute mean error difference
in comparison to previously existing approximation techniques.

Keywords: COordinate Rotation DIgital Computer (CORDIC), Duplex Property, Maclaurin Series, Squar-
ing, Trigonometric Functions, Taylor Series, Vedic Mathematics.

I. INTRODUCTION

Trigonometric functions are one of the fundamental, yet the most essential core functions in the domain of digital
signal processing, digital image processing and high-performance computing applications [1], [2]. This, in turn,
demands efficient and optimized hardware implementations. Efficient hardware implementation of trigonometric
and inverse trigonometric functions can be employed by using COordinate Rotation DIgital Computer (CORDIC)
[3], or Look-Up Table method or power-series method [4]. Among the three methods, CORDIC implementation
is the simplest using shift-and-add operations only, but the major disadvantage in it is that it requires a minimum
of n iterations which provides high latency and low speed [3]; whereas the look-up table method has a drawback
of higher area [4]. But, the power series method provides higher speed system compared to other two methods,
but this require an optimized and efficient squaring/multiplication operation and these can be achieved using Vedic
Mathematics [5]. Vedic Mathematics consists of sixteen sutras and thirteen sub-sutras and these can be easily applied
to binary computations although they are specific to decimal number system [5]. Several researchers have reported
Vedic squarers [6]–[12] using the Dwandwa Yoga Duplex property of Urdhwa Tiryagbhyam sutra and Anurupyena
sutra of Vedic mathematics [5].

The authors in [4] presented the power series approximation method for calculation of trigonometric functions
using the duplex property of binary numbers for squaring operations; but at the cost of algorithm complexity and
higher error relative to actual trigonometric functions. This confirms that the use of Duplex property increases
algorithm complexity for calculation of trigonometric functions via power series method. In this work, the authors
have put an attempt to do power series approximation of trigonometric and inverse trigonometric functions. This
paper proposes squaring technique using Vedic Mathematics based on Karatsuba-Ofman Algorithm [4] and without
the use of Duplex property for reducing algorithmic complexity.
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The rest of the paper is organized as follows: Section II illustrates the power series approximation of trigonometric
and inverse trigonometric functions along with its methodology and analysis in Section II-C and Section II-D
respectively. Section III explains the proposed squaring technique using Vedic Mathematics. This is followed by
conclusion in Section IV.

II. POWER-SERIES APPROXIMATION OF TRIGONOMETRIC AND INVERSE TRIGONOMETRIC FUNCTIONS

A. Trigonometric Taylor Series

The Taylor series expansion [13] of a real-valued or complex-valued f(x), an infinitely differentiable function
at a real or complex point a, can be given by

f(x) =

∞∑
k=0

f (k)(a)

k!
(x− a)k (1)

where, f (k)(a) is the kth derivative of the function f evaluated at the point a (real or complex) and k! is the
factorial of k. A Maclaurin series can be considered as a special Taylor series expansion for a particular case when
f(x) is evaluated over a = 0 as follows:

f(x) =

∞∑
k=0

f (k)(0)

k!
(x)k

= f(0) + f ′(0)x+
f (2)(0)

2!
x2 +

f (3)(0)

3!
x3 + . . .

+ · · ·+ f (n)(0)

k!
xk + . . . . . .

(2)

The Maclaurin series expansion of a few important trigonometric functions (sin(x), cos(x), tan(x)) and inverse
trigonometric functions (sin−1(x), cos−1(x)) valid for all real and complex values of x are as follows:

sin(x) =

∞∑
k=0

(−1)k

(2k + 1)!
x2k+1

= x− x3

3!
+
x5

5!
+ . . . for all values of x

(3)

cos(x) =

∞∑
k=0

(−1)k

(2k)!
x2k

= 1− x2

2!
+
x4

4!
− . . . for all values of x

(4)

tan(x) =

∞∑
k=1

B2n(−4)k(1− 4k)

(2k)!
x2k−1

= x− x3

3
+

2x5

15
− . . . . . . for | x |< π

2

(5)

where B2n is the Bernoulli series.

sin−1(x) =

∞∑
k=0

(2k)!

4k(k!)2(2k + 1)
x2k+1

= x+
x3

6
+

3x5

40
+ . . . . . . for | x |< 1

(6)
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cos−1(x) =
π

2
− sin−1(x)

=
π

2
−
∞∑
k=0

(2k)!

4k(k!)2(2k + 1)
x2k+1

=
π

2
− x− x3

6
− 3x5

40
− . . . for | x |< 1

(7)

B. Basic Mathematical Functions for Binary Approximation
1) Ceil Function

This function returns the nearest integer value above the specified number x. Symbolically, the ceil of a number
x is denoted by dxe. Suppose, the fixed-point fractional number is x = bi . . . b1b0 · b−1b−2 . . . bj , the corresponding
dxe for binary number system can be given as

dbi . . . b1b0 · b−1b−2 . . . bje

= bi . . . b1b0 + (b−1 ⊕ b−2 ⊕ · · · ⊕ bj)
(8)

where ⊕ is the logical OR operation.

2) Floor Function
This function returns the nearest integer value below the specified number x. Symbolically, the floor of a number

x is denoted by bxc. Suppose, the fixed-point fractional number is given by x = bi . . . b1b0 · b−1b−2 . . . bj , its
corresponding bxc for binary number system is given as

bbi . . . b1b0 · b−1b−2 . . . bjc = bi . . . b1b0 (9)

3) Round Function
This function returns the nearest integer value depending on the fractional part of the number. If the fractional

part of the number x is equal to or greater than 0.5, the function returns the smallest integer still above the specified
number. Otherwise, the function returns the largest possible integer still smaller than the specified number. Suppose,
the fixed-point fractional number is x = bi . . . b1b0 ·b−1b−2 . . . bj , the round (x) for binary number system is stated
as

round(bi . . . b1b0 · b−1b−2 . . . bj) = bi . . . b1b0 + b−1 (10)

C. Methodology for Power Series Approximation of Trigonometric and Inverse Trigonometric Functions
This subsection elaborates the methodology that can be followed for power series approximation of a few

trigonometric and inverse trigonometric series. This is explained in the following.

1) Trigonometric Series
a) Sine Series (sin(θ))

The power series approximation of sin(θ) can be given using (3) as

sinapx(θapx) = θapx −
θ3apx

3!× (26)3
+

θ5apx
5!× (26)5

(11)

for all the values of θ. Since sine is a periodic function, θ is valid for −π/2 ≤ θ ≤ π/2 only.
b) Cosine Series (cos(θ))

The power series approximation of cos(θ) can be given using (4) as

cosapx(θapx) = 1−
θ2apx

2!× (26)2
+

θ4apx
4!× (26)4

−
θ6apx

6!× (26)6
(12)

for all the values of θ. Since cosine is a periodic function, θ is valid for −π/2 ≤ θ ≤ π/2 only.
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Fig. 1. Variation of approximated sine series (sinapx(θapx) w.r.t sine series (sin(θ))

c) Tan Series (tan(θ))

The power series approximation of tan(θ) can be given using (5) as

tanapx(θapx) = θapx +
θ3apx

3× (26)3
+

2θ5apx
15× (26)5

+
17θ7apx

315× (26)7
(13)

for −π/4 < θ < π/4.

2) Inverse Trigonometric Series

a) Inverse Sine Series (sin−1(θ))

The power series approximation of sin−1(θ) can be given using (6) as

sin−1apx(θapx) =
(θapx)

26
+

(θapx)
3

2× 3× (26)3

+
3× (θapx)

5

2× 4× 5× (26)5
+

(3× 5× θapx)7

2× 4× 6× 7× (26)7

(14)

for -0.75 ≤ θ ≤ 0.75.
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Fig. 2. Variation of approximated cosine series (cosapx(θapx) w.r.t cosine series (cos(θ))

b) Inverse Cosine Series (cos−1(θ))

The power series approximation of cos−1(θ) can be giving using (7) as

cos−1apx(θapx) =
π

2
− sin−1apx(θapx)

=
π

2
− (θapx)

26
− (θapx)

3

2× 3× (26)3

− 3× (θapx)
5

2× 4× 5× (26)5
− (3× 5× θapx)7

2× 4× 6× 7× (26)7

(15)

for -0.75 ≤ θ ≤ 0.75.

D. Analysis of Approximated Power Series of Trigonometric and Inverse Trigonometric Functions

1) Trigonometric Series

a) Sine Series (sin(θ))

Fig. 1(a) shows the absolute error difference between sinapx(θapx) and sin(θ) for different binary approximations
explained in Section II-B. The plot for sine approximations (sin(θ) and sinapx(θapx)) with the best binary
approximation for θapx is also shown in Fig. 1(b). From Fig. 1(b), it can be shown that the maximum possible
error is 7.32× 10−3 and the mean absolute error difference is 4.6× 10−3.
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Fig. 3. Variation of approximated tan series (tanapx(θapx) w.r.t tan series (tan(θ))

b) Cosine Series (cos(θ))

Fig. 2(a) shows the absolute error difference between cosapx(θapx) and cos(θ) for different binary approximations
explained in Section II-B. The plot for cosine approximations (cos(θ) and cosapx(θapx)) with the best binary
approximation for θapx is also shown in Fig. 2(b). The maximum possible error is 8.25 × 10−3 and the mean
absolute error difference is 1.23× 10−4 clearly shown in Fig. 2(b).

c) Tan Series (tan(θ))

Fig. 3(a) shows the absolute error difference between tanapx(θapx) and tan(θ) for different binary approxima-
tions explained in Section II-B. The plot for tan approximations (tan(θ) and tanapx(θapx)) with the best binary
approximation for θapx is also shown in Fig. 3(b). From Fig. 3(b), it can be shown that the maximum possible
error is 11× 10−3 and the mean absolute error difference is 9.7× 10−3.

2) Inverse Trigonometric Series

a) Inverse Sine Series (sin−1(θ))

Fig. 4(a) shows the absolute error difference between sin−1apx(θapx) and sin−1(θ) for different binary approxi-
mations explained in Section II-B. The plot for inverse sine approximations (sin−1(θ) and sin−1apx(θapx)) with the
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Fig. 4. Variation of approximated inverse sine series (sin−1
apx(θapx) w.r.t sine series (sin−1(θ))

best binary approximation for θapx is also shown in Fig. 4(b). The maximum possible error is 4.2× 10−3 and the
mean of absolute error difference is 7.5× 10−3 clearly shown in Fig. 4(b).

b) Inverse Cosine Series (cos−1(θ))

Fig. 5(a) shows the absolute error difference between cos−1apx(θapx) and cos−1(θ) for different binary approxi-
mations explained in Section II-B. The plot for Inverse cos approximations (cos−1(θ) and cos−1apx(θapx)) with the
best binary approximation for θapx is also shown in Fig. 5(b). From Fig. 5(b), it can be shown that the maximum
possible error is 4.2× 10−3 and the mean absolute error difference is 7.5× 10−3.

Table I gives the comparison of absolute mean error difference of the proposed work with existing power series
approximations of trigonometric series [4]. sin(θ) and cos(θ) gives better results than [4]; although tan(θ) does
not give better performance due to a high relative error near θ = −π4 .

The absolute mean difference of the inverse trigonometric series is also summarized in Table II in reference
to Fig. 3 and Fig. 4. From Table II it is observed that sin−1(θ) and cos−1(θ) produces the same absolute error
difference of 7.5× 10−3. This is due to the fact that cos−1(θ) = π

2 − cos
−1(θ) and the same error is reflected in

both the sine and cosine inverse series.
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Fig. 5. Variation of approximated inverse cosine series (cos−1
apx(θapx) w.r.t cosine series (cos−1(θ))

TABLE I
COMPARISON OF THE PROPOSED WORK WITH EXISTING POWER SERIES APPROXIMATIONS OF TRIGONOMETRIC SERIES

Trigonometric Series
Absolute Error Difference
Tiwari [4] Proposed

sin(θ) 6.3× 10−3 4.6× 10−3

cos(θ) 3.6× 10−3 1.23× 10−4

tan(θ) 4.6× 10−3 9.7× 10−3

TABLE II
ABSOLUTE ERROR DIFFERENCE VALUES OF INVERSE TRIGONOMETRIC SERIES APPROXIMATIONS

Inverse Trigonometric Series Absolute Error Difference

sin−1(θ) 7.5× 10−3

cos−1(θ) 7.5× 10−3
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III. PROPOSED VEDIC SQUARING TECHNIQUE

Let us illustrate the proposed squaring technique taking an example for calculating the square of a binary number
A with n-bit length. A can be partitioned into two equal-sized binary numbers: AH and AL, using Karatsuba-Ofman
algorithm (K-O) algorithm [14]. Note: The subscripts H and L represent higher-order n/2 bits and lower-order
n/2 bits respectively only if n is even. If n is odd, the MSB bit of AH need to be padded with zeros so that AH
and AL are of equal n/2 bit-length [4].

The square of A can be calculated in terms of AH and AL and stated as follows:

A2 = A×A = 2n(A2
H) + 2

n
2 +1(AH ×AL) + (A2

L) (16)

AH × AL can be easily calculated with the help of Urdhwa Tribhagyam Sutra of Vedic multiplication for binary
numbers [5]. The terms A2

H and A2
L in 16 can be further split up recursively to two-bit binary numbers for squaring

up using K-O algorithm. Next, the conditional squarer can be realized for squaring two-bit binary number with the
following cases:

If A = 00, A2 = 0000

If A = 11, A2 = 1001

If A = 10, A2 = 0100

If A = 01, A2 = 0001

(17)

For better understanding of the proposed squaring technique using 16, let us take another example A = 1101. Here,
n = 4, therefore, the two equal-sized binary numbers are: (AH) = 11 and (AL) = 01. Using (17) of the conditional
squarer, the values of A2

H and A2
L are = 1001 and 0001 respectively. Next, the value of AH ×AL = 0011 can be

easily calculated using Urdhwa Tribhagyam Sutra algorithm. Since n = 4, the left shifting of obtained A2
H by n

bits result into 10010000; similarly, the left-shift of AH × AL by (n2 + 1) bits give 0011000. Lastly, adding A2
L

and the left-shifted values of AH ×AL, A2
H by n

2 + 1 bits and n, respectively gives the value of A2= 010101001.
This explains the squaring operation of A using (16). The major advantage of the proposed squaring technique is
square calculation of a binary number without the use of the “Duplex” property of binary numbers providing lesser
algorithmic complexity [4], [5], .

Future works focuses on the hardware implementation of the power series approximation of trigonometric and
inverse trigonometric functions. This aims towards high-speed architecture for integers. Preliminary methodology
for conversion of floating-point numbers to approximated binary numbers are already analyzed in detailed in Section
II. A close observation of subsection states that, for hardware implementation of approximated power series (for
trigonometric and inverse trignometric functions) requires squarer, multiplier, divider and factorial circuitry [1], [15],
[16]. Hardware implementation of these circuits is beyond the scope of this paper; but these will be considered as
future works.

IV. CONCLUSIONS

This paper presents an efficient Vedic squaring technique without the use of Duplex property and it can easily
be extended for any n-bit binary numbers. The main advantage of this proposed technique is that it focuses on
reduced algorithmic complexity. This work also presented the analytical study of Taylor series approximation of
trigonometric functions: sin(x), cos(x), tan(x)) and inverse trigonometric functions: sin−1(x), cos−1(x). Future
works will focus on hardware implementations of the proposed power series approximations on digital VLSI
architectures using FPGAs and ASICs. Experimental results might reflect great potential in digital arithmetic for
prospective exploration of high-performance and embedded computing systems.
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