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ABSTRACT
In this world of massive communication networks, data security and confidentiality are of crucial impor-
tance for maintaining secured private communication and protecting information against eavesdropping
attacks. Existing cryptosystems provide data security and confidentiality by the use of encryption and
signature algorithms for secured communication. Classical computers use cryptographic algorithms that use
the product of two large prime numbers for generating public and private keys. These classical algorithms
are based on the fact that integer factorization is a non-deterministic polynomial-time (NP) problem and
requires super-polynomial time making it impossible for large enough integers. Shor’s algorithm is a well-
known algorithm for factoring large integers in polynomial time and takes only O(b3) time and O(b) space
on b-bit number inputs. Shor’s algorithm poses a potential threat to the current security system with the
ongoing advancements of Quantum computers. This paper discusses how Shor’s algorithm will be able to
break integer factorization based cryptographic algorithms, for example, Rivest–Shamir–Adleman (RSA)
and Rabin Algorithms. As a proof of concept, experimental analysis of Quantum Shor’s algorithm on
existing public-key cryptosystems using IBM Quantum Experience is performed for factorizing integers of
moderate length (seven bits) due to limitations of thirty-two qubits in present IBM quantum computers. In a
nutshell, this work will demonstrate how Shor’s algorithm poses threat to confidentiality and authentication
services.

Keywords: Asymmetric Cryptography, Digital Signature, Encryption, IBM, Rabin, Rivest–Shamir–Adleman
(RSA), Shor’s Algorithm, Qiskit, Quantum Computing, Quantum Cryptography.

I. INTRODUCTION

For establishment of secured private communication and protecting information against eavesdropping attacks,
there is a requirement of cryptosystems providing information security services of confidentiality [1] and message
authentication [2]. Existing cryptosystems uses encryption and signature algorithms that provides data confidentiality
and authentication between Alice (the sender) and Bob (the receiver), respectively.

Basically, there are two types of cryptosystems: symmetric cryptosystems and asymmetric cryptosystems. Sym-
metric cryptosystems employ the same private key for each of the operations (e.g., encryption and decryption). Data
Encryption Standard (DES) and Advanced Encryption Standard (AES) [3] are the most commonly used symmetric
cryptosystems. Unlike symmetric-key, asymmetric cryptosystems (known as public-key cryptosystems) have two
distinctive keys: a private key and a public key without compromising the secrecy of the private key [4]. The most
common used asymmetric crypto-systems are: Rivest–Shamir–Adleman (RSA) [5] and Rabin [6] cryptosystems.
Asymmetric cryptosystems use the concept of product of two large prime integers for key generation; that will
be discussed in details in Section II. Large integer factorization might not be possible using classical computers
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Algorithm 1: RSA Encryption Algorithm [13]
1 Variables:

Public Key: Tuple (e, n)
Private Key: Integer d
Plaintext: P
Ciphertext: C

2 Functions:
Carmichael’s Totient function: φ(n)

3 Key Generation:
Choose two large primes p and q such that p 6= q
Calculate n = p× q
Calculate φ(n) = (p− 1)× (q − 1),
Choose e such that gcd(e, φ(n)) = 1
Calculate d = e−1mod(φ(n)))

4 Encryption: C = P e mod(n)
5 Decryption: P = Cd mod(n)

in a feasible time; but the present asymmetric cryptosystems are still safe against eavesdropping or cryptographic
attackers till the advent of quantum computers.

Recent developments in Quantum Computing (QC) over the years [7], [8] show that quantum computing al-
gorithms could outperform existing classical algorithms in terms of time complexity [9]. For example, Quantum
Grover’s algorithm provide a drastic quadratic speedup in searching an unstructured data [10]. Quantum Shor’s
algorithm factorize integers in polynomial time [11] over the best classical integer factorization algorithms [12]
with exponential time complexity. This work discusses how Quantum Shor’s algorithm poses threat to asymmetric
cryptosystems and can potentially break RSA and Rabin cryptosystems that use prime products for key generation.
The authors have also presented experimental analysis of attacks using open-source IBM quantum systems on
existing cryptosystems.

The remainder of the paper is organized as follows. Section II gives a brief on existing asymmetric public-key
cryptosystems based on products of large prime integers. Section III discusses about Quantum Shor’s Algorithm.
Section IV presents experimental analysis of attacks on existing asymmetric cryptosystems using Quantum Shor’s
Algorithm on IBM Quantum Computers. This is followed by conclusion in Section V.

II. BACKGROUND ON ASYMMETRIC PUBLIC-KEY CRYPTOSYSTEMS

A cryptosystem is a suite of cryptographic algorithms and their accompanying infrastructure that provides
information security services of confidentiality [1] and message authentication [2]. Encryption algorithms provide
message confidentiality1 between the sender and the receiver. [5]. The sender sends a message to the receiver by
encrypting message using a public key already present in receiver’s certificate provided by Certification Authority
[14]. The receiver decrypts the sender’s message using his/her own private key. Signature algorithms provide message
authentication (i.e. proof of origin of the message) of the sender to the receiver [15]. Suppose, the sender wants to
provide authentication of his/her message to the receiver, the sender signs the message using his/her own private
key; the receiver verifies signature using the sender’s public key present in the sender’s certificate provided by
Certification Authority [14].

This section discusses about existing asymmetric public-key cryptographic algorithms based on products of large
prime integers: (a) RSA Cryptosystem [5] and (b) Rabin Cryptosystem [6].

A. RSA Cryptosystem [5]
RSA cryptosystem uses modular exponentiation for encryption/decryption. Modular exponentiation use fast

exponentiation algorithm [5], [13] with two exponents, e and d. Here, e is a part of the public key (e, n) and

1To ensure the security of RSA and El-Gamal cryptosystems in algorithms 1,2,3 and 4, p and q must be at least of 512 bits, so that n will
be at least of 1024 bits.
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Algorithm 2: RSA Signature Algorithm [13]
1 Variables:

Public Key: Tuple (e, n)
Private Key: Integer d
Message: M
Signature: S
Message retrieved from Signature: M ′

2 Functions:
Carmichael’s Totient function: φ(n)

3 Key Generation:
Choose two large primes p and q such that p 6= q
Calculate n = p× q
Calculate φ(n) = (p− 1)× (q − 1),
Choose e such that gcd(e, φ(n)) = 1
Calculate d = e−1mod(φ(n)))

4 Signing: S = Md mod(n)
5 Verification: M ′ = Se mod(n)

The signature is valid if and only if M ′ =M

Algorithm 3: Rabin Encryption Algorithm [13]
1 Variables:

Public Key: n
Private Key: (p, q)
Plaintext: P
Ciphertext: C

2 Key Generation: Choose two large primes p and q in the form 4k + 3 and p 6= q, and calculate n = p× q
3 Encryption: C = P 2 mod(n)
4 Decryption:

Calculate four square roots of C:
a1 = (C(p+1)/4)mod(p)
a2 = (C(p−1)/4)mod(p)
b1 = (C(q+1)/4)mod(q)
b2 = (C(q−1)/4)mod(q)
Calculate Chinese remainders:
r1 =Chinese Remainder(a1mod(p), b1mod(q))
r2 =Chinese Remainder(a2mod(p), b1mod(q))
r3 =Chinese Remainder(a1mod(p), b2mod(q))
r4 =Chinese Remainder(a2mod(p), b2mod(q))
P ∈ (r1, r2, r3, r4)

d is private (the secret key). Suppose Alice send a message to Bob by generating ciphertext C = P emod(n) for

Algorithm 4: Rabin Signature Algorithm [13]
1 Variables:

Public Key: n
Private Key: (p, q)
Message: m
Signature: Tuple (r, u)

2 Functions:
Cryptographic Hash function: H

3 Key Generation: Choose two large primes p and q in the form 4k + 3 and p 6= q, and calculate n = p× q
4 Signing:

1) c = H(m|u), where u is the random number
2) Decrypt c to produce (r1, r2, r3, r4)
3) r ∈ (r1, r2, r3, r4) such that encryption(r) = c
4) signature is (r, u).

5 Verification:
Signature (r, u) for message m verification n:
1) Compute c = H(m|u) and encrypt r
2) The signature is valid if & only if the encryption of r equals c.

plaintext P ; Bob retrieves plaintext P using P = Cdmod(n) sent by Alice. Alice and Bob can encrypt (e is public)
and decrypt (because he knows d) in polynomial time, respectively; but for eavesdropping attack, Eve need to
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calculate e
√
C mod (n) using modular arithmetic.

The encryption and signature algorithms of RSA cryptosystems are illustrated in Algorithm 1 and Algorithm 2
respectively.

B. Rabin Cryptosystem [6]
M. Rabin devised the Rabin cryptosystem [6] based on quadratic congruence; whereas RSA is based on exponen-

tiation congruence. This is a special case of RSA cryptosystem where the values e= 2 and d= 1/2 are considered.
Here, encryption and decryption can be given by C = P 2 mod (n) and P = C

1
2 mod(n), respectively. Alice can

encrypt a message using n; only Bob can decrypt the message using p and q. In order for an eavesdropper to
decrypt the ciphertext, he/she has to solve integer factorization problem to obtain (p, q), which are factors of n.
Unlike RSA, Rabin cryptosystem is non-deterministic; decryption of a ciphertext C creates four equally probable
plaintexts (P1, P2, P3, P4) and Bob can choose one out of the four answers as correct answer.

The encryption and signature algorithms of Rabin cryptosystems are illustrated in Algorithm 3 and Algorithm 4
respectively.

III. QUANTUM SHOR’S ALGORITHM

The famous American mathematician Peter Shor invented Quantum Shor’s Algorithm in 1994 that factorizes
integers in polynomial time [11] over the best classical integer factorization algorithms [12] with sub-exponential
time complexity being impossible for large integers.

Quantum Shor’s algorithm solves the problem of period finding in polynomial time which is an efficient way
for factorization of integers into prime factors. This algorithm is based on (a) finding period of a modulus function
f(x) = ax mod(N) using period-finding problem and then, (b) find the prime factors of f(x) using Quantum
Phase Estimation (QPE) and Quantum Fourier Transform (QFT) [9].

For better illustration, considering two non-negative integers a and N , a < N and gcd (a,N) = 1 for the
periodic function f(x) = ax mod(N), x ∈ 0, . . . , N − 1, the period r of f(x) can be written as

ar ≡ 1 mod(N) (1)

for some integer r ≥ 1 and r is the smallest (non-zero) integer; f(x) is periodic with period = r and obeys
ax+r ≡ 1mod(N). The prime factors of N can be calculated as

ar ≡ 1 mod(N)

∴ ar − 1 ≡ 0 mod(N)

∴ (ar/2 + 1)(ar/2 − 1) ≡ 0 mod(N)

(2)

Based on equation (2), it can be stated that either of the (ar/2 + 1) or (ar/2 − 1) have a common factor with N .
Hence, gcd(ar/2 + 1, N) or gcd(N, ar/2 − 1) are the possible factors of N .

QPE helps in finding the period r of the function f(x); the factors are found out using classical computation
repeating QPE for different values of a, till an even value of r can be found out. But, in case of the period r to be
odd, QPE is repeated for different values of a since ar/2 will not be an integer for odd value of r. The following
sub-sections provides a brief details of QFT, QPE and period finding solution.

A. Quantum Fourier Transform (QFT) [9]
The quantum implementation of the Discrete Fourier transform (DFT) over the amplitudes of a wave function

is Quantum Fourier Transform (QFT) [16]. DFT acts on vectors (x0, x1, x2, . . . , xN−1) and maps it to the vector
(y0, y1, y2, . . . , yN−1) as

yk =
1√
N

N−1∑
n=0

xnω
−kn
N (3)
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Fig. 1. Circuit for Quantum Fourier Transform (QFT)

where, k = 0, 1, 2, . . . , N − 1 and ω = e2πi/N . Similarly, QFT acts on a quantum state |x〉 =
∑N−1
i=0 |i〉 and maps

it to the quantum state |y〉 =
∑N−1
i=0 |i〉 as:

yk =
1√
N

N−1∑
n=0

xnω
kn
N , (4)

where, k = 0, 1, 2, ..., N − 1 and ω = e2πi/N . The inverse Quantum Fourier Transform (IQFT) can be represented
as:

yk =
1√
N

N−1∑
n=0

xnω
−kn
N , (5)

where, k = 0, 1, 2, . . . , N − 1, ω = e2πi/N . Fig. 1 shows the quantum circuit implementation of QFT consisting
of Hadamard gates and Controlled U1 gates as the circuit components. A Hadamard gate when applied to a qubit
in a circuit it puts it in to a superposition of states such that when it is measured it could be 0 or 1 with equal
probability. A Controlled U1 gate is a gate which is used to implement a single rotation around the Z-axis (phase)
of the target qubit if the control qubit is 1. A Controlled NOT (CNOT) gate is a multi-qubit gate that operates on
a qubit based upon the state of another qubit. If the control qubit is 1, the target qubit will be flipped from 0 to 1
or vice versa. Else, if the control qubit is 0, the target qubit won’t be flipped. Mathematically, the Hadamard gate
and the controlled U1 gate can be written in matrix form as

Uk =

[
1 0

0 e2πi/2
k

]
(6)

H =

[
1/
√
2 1/

√
2

1/
√
2 −1/

√
2

]
(7)

It can also be stated that, QFT transforms states in the computational (Z) basis to the Fourier basis. Applying QFT
on |0〉 and |1〉 in Z basis, the obtained states are |+〉 and |−〉 respectively in X basis.

B. Quantum Phase Estimation (QPE) [9]
Any quantum state |ψ〉 can be represented by a point on the Bloch Sphere as

|ψ〉 = cos(θ/2) + eiφ sin(θ/2) (8)

where φ is the phase angle of |ψ〉 and this can be determined by using QPE algorithm and the unitary operation:

U |ψ〉 = e2πiφ |ψ〉 , 0 ≤ φ < 1 (9)

Here, |ψ〉 is an eigenvector of operator U , and e2πiφ is its corresponding eigenvalue. QPE algorithm uses phase-
kickback for writing the phase of U into t counting qubits in Fourier basis, which can then be converted to
computational basis by applying IQFT. Fig. 2 shows the circuit for QPE algorithm using t-bit precision. Applying
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Fig. 2. Circuit for Quantum Phase Estimation (QPE) using t-bit precision

controlled-U , controlled-U2, controlled-U4, and so on to the initial state with t qubits |0102 . . . 0n〉, produces the
quantum state: (|0〉 + e2πi2

n−1φ |1〉)(|0〉 + e2πi2
n−2φ |1〉 . . . (|0〉 + e2πiφ |1〉) which is equal to

∑2n−1
y=0 e2πiφy |y〉.

This quantum state is exactly the state when QFT is applied in the Fourier basis. Therefore, the phase angle
φ = 0.x1x2 . . . xn can be computed by applying IQFT.

Note: φ may not always be a rational number; hence, it turns out that applying IQFT produces the best n-bit
(n = t counting bits in this case) approximation of φ with probability at least of 4/π2 = 0.405. But, by using a
higher number of counting bits t, φ leads to a better approximation of φ.

C. Period Finding and Integer Factorization

For factorization of integer N , Shor’s solution uses QPE on the unitary operator [16]

Ux |ψ〉 = |axψmod(N)〉 (10)

for periodic function f(x) = axmod(N) with some integer a. QPE is applied on the qubits starting with counting
qubits (input register) and ancilla qubits (output register) initialized to |0〉, using equation (10) so that period r of
f(x) = axmod(N) is stored in counting bits in Fourier basis, which later, can be converted into computational
basis by applying IQFT.

Since f is periodic, the measurement probabilities of possible outcomes y in the input register is stated by
(|
∑
x:f(x)=f(x0)

e2πixy/N |2)/N , i.e. (|
∑
b e

2πi(x0+rb)y/N |2)/N with f(x0) in the output register.

It is observed that as the value of yr/N converges to an integer, probability outcome is higher. Thus, turning y/N
to an irreducible fraction, the denominator of this fraction r’, is a probable candidate for r. If f(x) 6= f(x + r’),
it will be terminated and different values of r closer to y, or multiples of r′ are tested; this process need to be
repeated for different values of a till a particular r is found out.

Fig. 3 shows the quantum circuit for period finding solution of Shor’s Algorithm. Later, the prime factors of N
can be found out using period finding solution (Fig. 3) and (2) on classical computations and can be illustrated in
the following steps:

1) Pick a random number a and calculate gcd(a,N).
2) There is a probability that the random number picked (a) could be a non-trivial factor of N i.e gcd(a,N) 6= 1.If

so, then terminate the algorithm.
3) If random number picked (a) is a trivial factor of N i.e gcd(a,N) = 1, then use the quantum period-finding

algorithm to find the period r.
4) If r is odd or ar/2 is a trivial factor of N (i.e ar/2 ≡ −1(modN)), then go back to step 1. Else, either of

the gcd(ar/2 + 1, N) and gcd(ar/2 − 1, N) are non-trivial factors of N .
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Fig. 3. Quantum Circuit for Period Finding using t-bit precision

Fig. 4. Quantum Circuit for Shor’s algorithm of integer factorization n = p× q (119 = 17× 7)

Fig. 5. Measurement Results obtained from IBM Quantum Experience for integer factorization n = p × q (119 = 17 × 7) using Quantum
Shor’s Algorithm

IV. ANALYSIS OF ATTACKS USING QUANTUM SHOR’S ALGORITHM

Shor’s algorithm can be used to attack assymmetric cryptosystems based encryption algorithms [17] and signature
algorithms [18], [19]: (a) RSA Cryptosystem (b) Rabin Cryptosystem.

A. Attacks on RSA Cryptosystems

The RSA key generation process is the same for both encryption and signature algorithms discussed in Algorithm 1
and Algorithm 2 respectively. Large number n can be easily factorized into p and q using Quantum Shor’s algorithm;
and after integer factorization, φ(n) and d can be calculated using p and q as e is public. Since d is a private key of
some entity, ciphertext C sent to this entity encrypted by entity’s public key (e, n) is no longer secure as it can be
decrypted using d. Further, d can be used to forge the signature of that entity which poses threat to authentication
of this entity, leading to total break [19] of the entire RSA cryptosystems.
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B. Attacks on Rabin Cryptosystems

The key generation process involved in Rabin cryptosystem is the same for both the encryption and signature
schemes already discussed in Algorithm 3 and Algorithm 4 respectively.

Quantum Shor’s algorithm can easily factorize n into prime factors: p and q since n is public. Next, (p, q) is a
private key of some entity, ciphertext C sent to this entity encrypted by entity’s public key n is no longer secure as
it can be decrypted using (p, q). Further, (p, q) can be used to forge the signature of that entity which poses threat
to authentication of this entity, leading to total break [19] of the entire Rabin cryptosystems.

C. Experimental Analysis

Solving large integer factorization in polynomial time complexity poses direct threat to confidentiality and
authentication services of a cryptographic system that uses prime products for key generation. Experiments on
integer factorization using Shor’s Algorithm were performed on IBM Quantum Experience: ibm qasm simulator

as backend having 32 qubits. Basically, Shor’s algorithm uses 4nbit+4 qubits for factorizing an large integer with
nbit bits leading to the maximum value of integer n < 128 and this can be calculated as:

4nbit + 4 ≤ 32

nbit ≤ 7

∴ n < (2nbit = 128)

(11)

Quantum Experiments were easily carried out for demonstrating successful attacks on RSA and Rabin cryptosystems
by integer factorization for integers n less than or equal to 127 due to limitations of number of qubits presently
on IBM quantum computers. Fig. 4 shows the circuit for Quantum Shor’s Algorithm for factorization of n = 119

into two prime products: p = 17 and q = 7 (Note: This is considered as an example for better illustration).

Fig. 5 shows the measurement probabilities (in percentage) of the Quantum Shor’s circuit (Fig. 4). From Fig.
5 it can be observed that the maximum possible counts (in %) are 23.4% and 24.5% for the quantum states
000000000000000000000100000000 and 000000000000001000000000000000, respectively. (Note: Little-endian
format is followed for representation of quantum states in IBM system).The states can be represented in integers
as 25610 and 3276810. The possible phases for the quantum states are: 256/214 = 1/64 and 32768/214 = 2/1;
assuming the total number of counting qubits is 14. Both 1/64 and 2/1 are in the form of irreducible fractions,
the possible values of the period r are the denominators of the fractions, i.e. 64 and 1, respectively. r = 64 is the
period from the period finding algorithm using the relation: f(x)= 2x mod(119). Next, the possible prime factors
of 119 can be either one of the gcd(264/2 − 1, 119) = 17 or gcd(264/2 + 1, 119) = 1. Therefore, one of the prime
factor is p = 17. (Note: 1 is not considered as the prime factor of n). The other prime factor q is division of n=
119 by prime factor p (obtained from Shor’s algorithm), i.e., 119/17= 7.

Presently, there are few practical limitations of running existing RSA and Rabin cryptosystems with prime factors
(p and q) up to length of 512-1024 bits and hence n of 1024-2048 bits [13] on IBM Quantum computers due to
availability of only up to 32 qubits [20]. Future works will focus on experimental analysis of 2048-bit integer
factorization using 8196 (4 ∗ 2048 + 4 = 8196) qubits for RSA and Rabin cryptosystems with the advent of IBM
systems using noisy qubits [21], [22].

V. CONCLUSIONS

This paper successfully demonstrated how Quantum Shor’s algorithm will be able to break integer factorization
based asymmetric cryptographic algorithms of Rivest–Shamir–Adleman (RSA) and Rabin cryptosystems. Experi-
mental analysis on integer factorisation were performed for integers factorizing integers moderate in length (seven
bits) due to limitations of thirty-two qubits in present IBM quantum computers. Implementation of Quantum Shor’s

Proceedings DOI: 10.21467/proceedings.114
ISBN: 978-81-947843-8-8

594 Series: AIJR Proceedings
ISSN: 2582-3922

https://doi.org/10.21467/proceedings.114


Thombre & Jajodia AIJR Proceedings, pp.587-596, 2021

algorithm on large scale poses potential threat to to confidentiality and authentication services of currently used
security systems. This necessitates the development of Quantum Cryptography [23] using quantum superposition
and quantum entanglement for encrypting data; making it virtually unhackable and preventing it from eavesdrop-
ping attacks, such as, Quantum Key Distribution (QKD) [24] and BB84 [25] protocols that are secured against
cryptographic attacks [26], [27].
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