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Abstract 

This paper analyses the different parameters of tunnel field-effect transistor (TFET) based on silicon 

Nanowire in vertical nature by using a Gaussian doping profile. The device has been designed using an 

n-channel P+-I-N+ structure for tunneling junction of TFET with gate-all-around (GAA) Nanowire 

structure. The gate length has been taken as 100 nm using silicon Nanowire to obtain the various 

parameters such as ON-current (ION), OFF-current (IOFF), current ratio, and Subthreshold slope (SS) 

by applying different values of work function at the gate, the radius of Nanowire and oxide thickness 

of the device. The simulations are performed on Silvaco TCAD which gives a better parametric analysis 

over conventional tunnel field-effect transistor.  
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 Introduction 

The regular scaling in metal oxide semiconductor field effect transistors (MOSFETs) is very difficult due 

to various aspects such as current carrier mechanism (thermal emission of electrons); higher short channel 

effects (SCEs), high OFF current and limited subthreshold slope (60mV/decade) in the Nanoscale regimes 

[1]–[7]. The main demerit of MOSFET is Subthreshold Slope (SS) which is defined as rate of increase in 

output (drain) current with the increase in the gate-source voltage (Vgs) from 0 volt.  The higher SS are effects 

the supply voltages, which is required for the switching of device from OFF state to ON state [8]–[10]. For 

the development of new devices in the semiconductor; there is need to be especially low power, lower SS 

and power efficient device. The tunnel field effect transistor (TFET) is most preferable candidate in the 

semiconductor industry from the last decade [11]–[15]. The current carrier mechanism of TFET is performed 

by tunnelling instead of thermionic emission. The structure of TFET is in asymmetrical nature (p-i-n) with 

different material of source and drain (either n-type or p-type). TFET has number of merits which overcomes 

the problem of MOSFET such as low Subthreshold slope (SS) which is suitable for low power supply, 

reduced SCEs [16]–[19] and low OFF-current (IOFF) due to band to band tunnelling mechanism; but it suffers 

from low ON-current (ION), which is required for high speed operation of the device. So it should be needed 

that an advance device which mitigates the problem of low ION and operating speed. The Nanowire based 

TFET structures have the potential to gives the better results in terms of high ON-current and higher 

operation speed with reduced SCEs [20]–[23]. So we have designed and simulate silicon gate all around 

Nanowire TFET (si-NWTFET) and analyze its various parameters such as ION, IOFF, ON-OFF current ratio 

(ION/IOFF) and SS with the impact of its dimensional parameters such as gate length, oxide thickness and 

radius of Nanowire. 
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 Device  Structure  

The structure of designed silicon gate all around Nanowrie TFET (si-NWTFET) is shown in Fig. 1. The 

basic p+-i-n+ structure of TFET is used for device designing with Silicon GAA Nanowire. The basic 

parameters of si-NWTFET taken as gate length (Lg) = 100 nm, Nanowire Radius (R) = 20 nm, Source/Drain 

length (Ls/d) = 80 nm, thickness of gate oxide (Tox) = 2.5 nm with Gaussian doping concentration are used 

for simulation of the device using Silvaco Atlas Tools.   

 

 Strcture of  si-NWTFET. 

The high source/drain doping concentration, channel doping concentration and gate-workfunction of 

siNWTFET are taken as 1*10-19 cm-3, 1*10-17 cm-3 and 4.3 eV respectively. The Silicon thickness are 

maintained under Debye-length; as√([(𝜖_𝑠𝑖 𝑉_𝑇)/𝑞 +  60. 𝑁] ), where as q, N, VT represents the charge 

of electron, concentration and  thermal voltage respectively while  𝜖𝑠𝑖 refer as dielectric constant [24][25].  

The proposed structure is calibrated with reported conventional TFET structure [16]. The basic 

parameters of conventional device are taken same as reported in ref [16]. The calibration has been done 

using plot digitizer tools and Silvaco Simulation Tool. The calibration curve of siNWTFET is shown in Fig. 

2.  

Calibiration Cuve of  si-NWTFET with ref [16]. 
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The different models have been used for simulations such as BTBT model for tunneling, BGN model 

for the effect of bandgap and FLDMOB for field-dependent mobility as well as FERMI model for Fermi–

Dirac statistics with the addition of CVT model. The used parameter for siNWTFET designing is illustrating 

in Table I. 

PARAMETER OF SINWTFET 

Parameters Values 

Gate length (Lg) 100 nm 

Work-function of Gate (ϕg) 4.3eV 

Thickness of  gate oxide (Tox) 2.5 nm 

Nanowire Radius (R) 20 nm 

Channel Concentration 1 ×1017cm-3 

Source/Drain  Concentration 1 ×1019cm-3 

 

Fig. 3 illustrate the energy band diagrams of si-NWTFET in ON state and OFF state which is performing 

as tunneling actions during simulation process.  

 

 

Engery band diagram of siNWTFET. 

When the gate voltage is equal to zero and greater than zero (~1.5V), device will act as OFF state and 

ON state respectively by applying drain-source voltage is 1.0 V. The energy gap between valance band and 

conduction band is higher in OFF state but lesser in ON state. So the tunneling of electrons has possible 

only in ON state as shown in energy band diagram.  

 Result and Simulation 

The result and simulation of si-NWTFET are explained in this section by using Silvaco simulation tool. 

To calculate the different parameters such as drain current, ON/OFF ratio and SS, dimensional parameters 

has been varied such as gate work-function (ϕg), oxide thickness and radius of Nanowire. The drain current 

variation of si-NEFET are observed with the effect/impact of different parameters such as 

 Effect of work-funtion (ϕg)   

Firstly, the ID characteristics are observed with different ϕg and taken as 4.0 eV, 4.3 eV and 4.6 eV as 

shown in Fig. 4. For the simulation work the gate voltage varied from 0 to 1.5 voltage and drain-source 

voltage (Vds) taken as 1.2V. 
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Effect of gate work-function on drain current. 

 

Acording to Fig. 4, the maximum ON current (3.60×10-6) and minimum SS (20.25 mV/dec) are observed 

at ϕg =4.0 eV, but OFF (2.45×10-13)  current is also high which leads the SCEs. On the other hand lower 

OFF current are  observed at 4.3 eV. So ϕg =4.3 has been taken for proposed device for minimum SCEs. 

 Effect of oxide thixkness (Tox)   

Secondly, the ID characteristics are observed with different Tox (1.5 nm, 2.5 nm and 3.5 nm). Fig. 5 illustrates 

the simulation work of siNWTFET on drain current with the impact of different Tox at 1.2V drain-source 

voltage. It is observed that better parametric value of ID and current ratio with minimum SS (19.40) at 

Tox=1.5 nm. During the simulation process ϕg , R and Tox  has been taken as 4.3 eV, 20 nm and 2.5 nm 

respectively. The minmum value oxide thickness has given good parametric values and lesser leakgae 

current in the device.  
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Drain current variation due to effect of Tox. 

  Effect of Nanowire Radius (R)   

The  drain current variation with the effect of nanowire radiu are shown in Fig. 6. According to 

characteristics curve it observed that higher ION (1.45×10-6) at R= 30 nm, but the  

 

Parameters 
ION 

(A/μm) 
IOFF (A/μm) ION/ IOFF Ratio SS (mV/dec) 

ϕg = 4.0 eV 3.60×10-6 2.45×10-13 1.47×107 20.25 

ϕg = 4.3 eV 7.63×10-7 3.23×10-18 2.36×1011 20.32 

ϕg = 4.6 eV 4.76×10-8 2.67×10-18 1.78×1010 20.32 

Tox = 1.5 nm 2.05×10-6 2.95×10-19 6.94×1012 19.40 

Tox = 2.5 nm 1.85×10-6 4.70×10-19 3.94×1012 23.81 

Tox = 3.5 nm 1.71×10-6 7.40×10-19 2.31×1012 25.67 

R = 10 nm 1.69×10-7 1.17×10-18 1.45×1011 15.22 

R = 20 nm 7.63×10-7 3.23×10-18 2.36×1011 20.32 

R = 30 nm 1.45×10-6 5.13×10-18 2.83×1011 18.95 

 
Drain current variation due to effect of Tox. 
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IOFF current is also at this stage. Due to R variation on siNWTFET the better SS (15. 22) has been archived 

on 10 nm. During to simulation work, gate voltage is varied from 0 to 1.5 and Vds=1.2. The detailed 

observed parametric values are given in Table II.  

 Conclustion  

 The device (si-NWTFET) has been designed and simulated using Gaussian doping profile and 

analysed parametric variations of ION, IOFF, ION/IOFF and SS. The simulated results have also showns the 

effect on drain-current (Id) with impact of Tox, R and ϕg of the device. The most suitable parametric value 

are observed such as ION = 3.60x10-6 A/μm, IOFF = 2.95x10-19 A/μm, SS = 15.22 mV/dec and ION/OFF = 

6.94×1012. The proposed si-NWTFET device structure will be suitable for low power applications.  

PARAMETER OF SINWTFET AFTER SIMULATION 
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