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Abstract 

Source Code Summarization refers to the task of creating understandable natural language summaries 

from a given code snippet. Good-quality and precise source code summaries are needed by numerous 

companies for a platitude of reasons - training for newly joined employees, understanding what a newly 

imported project does, in brief, maintaining precise summaries on the evolution of source code (using 

git history), categorizing the code, retrieving the code, automatically generating documents, etc. There 

is a considerable distinction between source code and natural language since source code is organized, 

has loops, conditions, structures, classes, and so on. Most of the models follow an encoder-decoder 

structure, we propose an alternative approach that uses UAST(Universal Abstract Syntax Tree) of the 

source code to generate tokens and then use the Transformer model for a self-attention mechanism 

which unlike the RNN method is helpful for capturing long-range dependencies. We have considered 

Java code snippets for generating code summaries. 

 

Keywords: Transformer model; Universal Abstract Syntax Tree; Structural representation; Encoder; 

Decoder. 

  Introduction 

Comprehending code snippets is an important pillar of software development and code maintenance. 

Developers’ efforts are reduced considerably if the natural language summary of the code snippet is 

available. The task of creating readable and understandable natural language summaries that define the 

purpose of code is known as source code summarization. Due to the advancements in deep learning 

techniques, increasing use of neural networks, easy availability of high-volume data via numerous large 

warehouses, repositories, etc.; developers are devoting a lot of time and resources on automatic code 

summarization. Seq2seq is a preferred option by many while generating summaries using neural networks. 

Recurrent Neural Networks using attention mechanisms for combining solo code tokens which are 

represented with the help of an embedded matrix is one of the earlier methods to generate summaries of 

code snippets. Later works also include the seq2seq network which deploys recurrent neural networks via 

attention on different program snippets. As the Recurrent neural network-based models try to model the 

data sequentially by processing the tokens generated from source code, in a sequential manner; they prove 

to be inefficient in modeling non-sequential-structural code representation. Another drawback of using the 

RNN method is that the model is unable to detect long-range dependencies between program tokens which 

might arise if the length of the code snippet is very long. Unlike Recurrent Neural Networks, LSTM (long 

short term memory) is able to identify long-range dependencies between code tokens which is very useful 

in source codes which are very long. LSTM has shown to increase efficiency substantially in many NLP 

tasks like text generation, summary generation, concept making, story writing, etc. In order to model the 

relationship between code tokens, it is necessary to learn the order in which the code tokens appear in a 

sequence. In our work, we show that efficiency in generating source code summary is improved by an 

incredible degree if the positional encoding is infused utilizing the Transformer model. We show that 
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instead of absolute positioning, relative positioning is a better measure and is substantially more efficient 

for determining code summaries. Our proposed approach is easy, effective, and efficient and results show 

that it outperforms many state-of-art approaches that use deep neural networks (RNN, CNN, Code-NN, 

etc.) Our basis for evaluating our Transformer model, which uses pairwise relative positioning of code 

tokens are 3 matrices - BLEU, METEOR, and ROUGE-L. 

 Literature Review 

We have studied many research papers on code summarization and the models used in them are discussed 

in brief below: 

 Automatic Source Code Summarization with Extended Tree-LSTM 

Source code contains structural features like loop, branching, conditions etc. These structural features 

of the source code are captured by Abstract syntax trees (ASTs). As a result, ASTs play an important role 

in machine learning studies. This paper explains how Tree base LSTM which is a generalization of tree 

structured data isn’t sufficient as it is unable to handle ASTs with nodes with arbitrary number of children. 

To handle this issue, the paper proposes an extension to tree LSTM – Multi way tree LSTM, which can 

handle arbitrary numbers of children to a node in ASTs. This approach uses 3 basic components – the 

encoder, the decoder and attention mechanism. The proposed approach achieved better results than several 

state-of-art techniques. 

 Summarizing Source Code using a Neural Attention Model 

Code-NN uses Long Short Term Memory (LSTM) model with attention mechanism to produce natural 

language summaries of C sharp programs and MySQL queries. The corpus is generated by scrapping code 

from stack Overflow website, each time the model is trained.  

Task Definitions: CODE-NN produces a Natural Language summary of C sharp code snippets 

(GENERATION task). CODE-NN also performs the inverse task to retrieve source code given a question 

in NL (RETRIEVAL task).  

Consider UC to be the set of all code snippets and UN to be the set of all summaries in NL. For training 

the corpus with J number of code snippets and summary pairs (cj , nj ), 1 ≤ j ≤ J, cj ∈ UC, nj ∈ UN, it 

defines the following two tasks: 

GENERATION: For a given program snippet ’c’ ∈ UC, the task is to generate an NL sentence n∗ ∈ UN 

that maximizes the chosen score function ’s’ ∈ (UC × UN → R): n = argmax n s(c, n)  

RETRIEVAL: The approach also uses the same score function ’s’ to retrieve the highest-scoring code 

snippet c ∗ j from the training corpus, given an NL query n ∈ UN: c ∗ j = argmax cj s(cj, n), 1 ≤ j ≤ J. Here, j 

lies between I and J, both including.  

The accuracy of this approach is as follows:  

Error % cases 

Correct 37 

Redundant 26 

Missing Information 24 

Out of context 13 

 

Loopholes:  

1. Only the lexical approach was taken into consideration.  

2. High Accuracy could not be achieved. 
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 TASSAL: Automatic Source Code Summarization 

This method aims to automatically create a snapshot of each source code snippet in the repository by 

wrapping its regions of code below. The latest code editors have code wrapping features to specifically 

select encoding code-blocks, it is not possible to use as wrap decisions to be made manually or according 

to simple rules. TASSAL Algorithm created by using tree tracing is based on building a similarity between 

the source code summary and the source code. This paper is the first content-based wrap to summarize the 

code. TASSAL Framework: It acts as a compilation of a set of source files and the required compression 

rate and the summary of the source code is given as output, where the source code itself is the input. Steps: 

1. Sets the AST of the code to find a region that is suitable for wrapping. 2. A source code language model 

is used for each region that overlaps. 3. Identify the entire source file, which directly shows the code, as 

opposed to special projects or Java-generic tokens that have little to do with file comprehension. 4. 

Determines regions that cannot be changed to fold while achieving the required level of size reduction. 

 CODE2SEQ: Generate sentences from structured representations of code 

Sequence-to-sequence (seq2seq) models, used in neural machine translation (NMT), utilize state-of-the-art 

functionality of the functions by considering source snippets as a string of tokens. This model uses an 

alternate method that provides the architecture of programming languages to improve source code. This 

model represents a code line as a set of overlapping paths in its abstract tree (AST) and utilizes attention 

mechanisms to select the appropriate paths during the opening process. Representing a source code in AST: 

 1. AST is a unique identifier for source code written in any language. 

 2. User-defined values that indicate identifiers and names from the source snippet are used to refer to 

the leaf edges of the AST.  

3. Terminals (non-leaf nodes) represent a limited set of structures in a language, e.g. constraints, 

expressions, and declarations.  

 Improving Automatic Source Code Summarization via Deep Reinforcement Learning 

Most of the models include the encoder-decoder framework in which the function of the encoder is to 

encode the code into a hidden space and then the decoder decodes into natural language space. However, 

it has two major drawbacks:  

a) The encoder they use, majorly uses the sequence to sequence model and therefore only the sequential 

content of the code is under consideration and as a result, the tokens’ relationship in the snippet which 

should be captured by the AST structure and which is important for the task of code summary 

generation is ignored here.  

b) Their decoders are just trained to predict the next token with the previous token given. However, 

during test time it is expected to generate the entire sequence from scratch. In this paper, the BLEU 

metric is used to train both networks. 

A more comprehensive approach is used in this paper which includes usage of two LSTMS; one AST-based 

LSTM for the structure of source code and another LSTM for the sequential content of the source code. 

These 2 representations are combined using a mixture of attention mechanisms (hybrid model). So the 

model works in lexical as well as syntactic level. Comments in the code are also considered as a part of 

syntactic analysis. For summarization, deep reinforcement learning is used. The restriction confronted is to 

structure a reward function to measure the value of action correctly which is as yet an open issue. The 

danger to legitimacy is generally on the metrics which we chose for evaluation. For tasks such as neural 

machine translation, image captioning, etc. it is a tough task to evaluate the resemblance between two 
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sentences. Also, the performance based on human evaluation gives more perspectives that have to be 

considered.  

 System Requirement Specification 

Following software and hardware specifications are preferable for our model to run efficiently and without 

any errors.  

A. Software Specifications 

The following are the software specifications required: 

● Python 3+ - Python is an interpreted, high-level, regular-purpose programming language. Version 

3+ is preferable. 

● Numpy - NumPy is a python library used for programming. It has additional support for large, 

multi-dimensional arrays and matrices. Also, it has a huge collection of high precision 

mathematical methods used for operations on these arrays.  

● Torch 1.3+ - The torch is a python based computing package that provides many useful features. 

The features we use for our work are as follows:- 1. Computational tensor (like NumPy) with 

strong GPU acceleration and Deep Neural Networks on a tape-based autograd system which 

provides maximum flexibility and speed.  

● Tqdm - Tqdm is a python library having progress bar features. It has good support for loops like 

’for’, ’while’ etc which are nested. It can be used in Jupyter/IPython notebooks.  

● PrettyTable - PrettyTable is another Python library that supports features like tabular data in 

visually alluring ASCII tables in a quick and simple manner. 

B. Hardware Specifications 

The following hardware system specifications are required: 

● Ubuntu 12.04 or higher  

● 16 Gb RAM system memory  

● Disk space of at least 10 Gb  

 

C. Assumptions and Dependencies 

The following assumptions and dependencies need to be satisfied: 

● Hardware is in proper working condition  

●  Latest and updated OS is used  

● Python libraries are installed prehand 

 Proposed Approach 

We propose to implement an LSTM (long short term memory) based model for generating summaries 

of input programs. Our dataset consists of java code snippets and we aim to expand our language scope to 

other languages like python, CPP, etc. The input source code is used to construct a universal abstract syntax 

tree, tokens are then extracted from the UAST and given to the Transformer LSTM model. The code 

summary generated is also a sequence of tokens. X = (x1, x2, ..., xn). A brief description of how to model 

the pairwise relative positioning between tokens to generate a code summary is described in the coming 

sections. 

 Architecture 

The Transformer model consists of an encoder and a decoder, both having stacked multi-headed attention 

mechanisms. The encoder and the decoder are also equipped with linear transformation layers which are 
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parameterized. At each layer, the self-attention mechanism is carried out, and ‘K’ attention heads are utilized 

by the multi-head attention model. We have chosen the Encoder-Decoder transformer model as it can 

solve versatile problems of sequence to sequence models. As the number of input tokens, as well as the 

number of output tokens, vary from code to code, it is important to address the same. 

 Transformer 

The transformer model converts a sequence of tokens into another sequence but does not use recurrent 

neural networks like RNN or CNN. It can be described using 2 blocks - the encoder block and the decoder 

block. Both the encoder and the decoder models are so designed that stacking them on top of each other 

is feasible. Multi headed attention and feedforward networks are the major components. As direct strings 

cannot be used, the input and output sequence of tokens are first embedded in an n-dimensional space. As 

the transformer model is unable to store the absolute positions of the input tokens, we have chosen to track 

the relative positions of the tokens and learn the relationship between them. Consider Q to be the query 

matrix, and K be the vector representations of all tokens in the sequence. Let V be the set of values which 

are vector representation and let ‘a’ be attention weights which are defined by:  

 

𝑎 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥( 𝑄𝐾𝑇/√𝑑𝑘) 

 
Figure 1. Attention Models 

 

The softmax function applied to the weights ‘a’ varies in the range [0, 1] and also has distribution in the 

same range. All the tokens in the sequence have the weights then applied to them. Depending upon the 

positions of the above matrices in the attention model, their values change. The positions include at the 

encoder, at the decoder, and in between the encoder and the decoder ie them attention. The multi-head 

attention model attaches the encoder model to the decoder model. A feed-forward point-wise neural 

network follows the multi-head attention model. This feed-forward network is present in both, the encoder 

as well as the decoder and, it has similar parameters for each position. These params consist of a separate 

identical linear transformation of each sequential token. 
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 Encoder 

Reads a sequence of input tokens, and encodes them into a constant-length vector. The encoder apprehends 

both, the semantic and the syntactic structure of the snippet. The encoder level learns the relationship 

between the input set of tokens and develops an internal representation of these relationships. Let x = (x1, 

x2, ..xn) be the set of input paths. Let yi be the vector representation of each path - yi = (v1, v2, …,. vn). 

Each path is represented distinctly via a bidirectional transformer which is used for capturing the 

compositional nature of the end values. Any UAST path is characterized by terminals which are its first and 

last nodes. The values of these terminals are the tokens of the code snippet. Code tokens are further split 

into sub-code tokens, using camel-case split, snake case split, etc. The Long short term decoder can also be 

used for predicting sub tokens. 

 Decoder 

For n paths, the average of the 

combined results of all n paths is 

considered for providing the 

decoder with an initial stage. 

Unlike the usual Encode-Decode 

models, the sequence of the input 

paths which are random is not 

considered. Hence, the code 

snippet is represented not as a list 

but as a set of random vectors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Transformer Model 
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Figure 3. Encoder and Decoder 

 Self Attention 

In this mechanism, every head computes sequential input tokens which are provided as input to the 

Transformer model which in turn outputs a sequential set of output tokens. Here x = (x1, x2, ...., xn) are 

the input code sequential tokens and O = (O1, O2, ....., On) are the output summary sequential tokens. 

Also, 𝑉𝑃, 𝑉𝑊, 𝑉𝑄 are unique parameters for each layer in the encoder, decoder, attention mechanism 

respectively.        𝑂𝑖 =  ∑∞
𝑖 = 1 𝛽𝑖𝑗 ( 𝑥𝑗 𝑉𝑊)       𝑒𝑖𝑗 =  𝑥𝑖 𝑉𝑄 (𝑥𝑗 𝑉𝑃)𝑇 / √𝑑𝑝  

All the output vectors are calculated using the above-given formula. 

 

 
Figure 4. Comparison between Models 

 Copy attention 

In our approach, the output sequence of vectors has tokens that are generated from both, the input set of 

tokens as well as extracting words from the vocabulary. We implement an extra layer of attention which is 

used for learning copy distribution on the stack head. This attention model allows the Transformer to copy 

tokens like method names, variable names, global variables from the code snippet and therefore enhance 

the summary generation considerably. 
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Dataset Java 

Train 68,238 

Validation 9,231 

Test 9,231 

Unique tokens in code 66,560 

Unique tokens in summary 45,998 

Average tokens in code 123.24 

Average tokens in summary 18.38 

 Coordinate Representation 

In this section, the focus is on modeling source code vectors and modeling relationships between any pair 

of tokens. 

 Encoding Actual Distance 

Our transformer model utilizes the ordering of the program snippets’ tokens and an embedded matrix is 

trained using the same. This matrix is used for learning the absolute positions of the encoding vectors. We 

have shown that calculating absolute positions of the tokens have not proven useful and the accuracy is 

limited as well. We have also trained another embedded matrix, which is trained correspondingly to learn 

the actual/absolute distance between the summary vectors. 

 Encoding Relative Positions 

We observed that the semantic representation of a program snippet does not only depend on the absolute 

positioning of vectors, but it more or less depends on the interaction between them. The interpretation of 

the source code gets influenced by these mutual/pairwise interactions. For example, x+y and y+x mean 

the same. It has been observed that, if the maximum relative position is clipped, then the positional 

information precision is limited. In our approach, we have not considered directional information obtained 

from tokens. So for 2 tokens A and B, the fact that A lies to the left/right of B in sequential order are not 

considered. The self-attention mechanism can be further expanded to encode the mutual relationship 

between the input tokens as follows: 

𝑜𝑖 =  ∑𝑛
𝑗 = 1 (𝛽𝑖𝑗 (𝑥𝑗 𝑉𝑊 +  𝑏𝑖𝑗 𝑊)) 

 𝑒𝑖𝑗 =  𝑥𝑖 𝑉𝑄 ( 𝑥𝑗 𝑉𝐾  +  𝑏𝑖𝑗 𝐾)𝑇 / √𝑑𝑝 

 Experimentation 

Experimentation of our project is as follows: 

 Setup 

12.1.1 Preprocessing the data 

We have used a java dataset. The scope of our project can be expanded to other languages as well, as we 

are using the UASTs of the source code to generate summaries. Preprocessing is carried out on the 

generated code tokens. The preprocessing step includes camel case splitting and snake case splitting carried 
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out on the tokens obtained as the output of UAST. The accuracy and performance of the code summary 

increase significantly if preprocessing related to splitting is carried out. 

Camel Case Splitting: Given a string with/without camel case letters, this split divides the string into 

substrings and splits it on camel case letters. Eg. AbstractClassWord is split into [Abstract, Class, word]. 

Snake Case Splitting: Snake casing is a method of writing a collection of words intended to be joined by 

space, to be joined by an underscore(\_). A typical example of the same is Abstract\_class\_word. Snake 

case split splits the word on the underscore, (removes the underscore) and returns a list of sub tokens. Eg. 

Abstract.class.word is split into [Abstract, class, word]. 

12.1.2 Metrics 

We use 3 different matrices to evaluate the accuracy of our summary generation model. These matrices are 

ROUGE-L, METEOR, and BLEU. We have also used tf-idf in initial stages. 

Rouge-L: The full form of ROUGE is Recall Oriented Understudy for Gisting Evaluation. ROUGE itself 

is a predefined set of matrices used to measure the performance of automatic summary generation models. 

A dataset of reference summaries is compared with the automatically generated summaries (which are 

machine produced). Recall and precision are used for calculating the overlap of N-grams between both the 

summaries.  

Recall: (number of overlapping words)/ (total number of words in the human-generated summary)  

Precision: (number of overlapping words)/ (total number of words in the summary generated by 

Transformer model)  

Meteor: Meteor is an automatic evaluating measure that measures the performance of system generated 

summaries with a set of human-generated reference summaries. System and segment generated values of 

the meteor are evaluated on the basis of alignments between hypothesis reference pairs. This matrice also 

includes paraphrasing tools and X-rays. 

Bleu: BLEU stands for bilingual Evaluation Understudy. It is an algorithm used to measure the performance 

of text translation by machine from one natural language to another. The output of this matrix is always a 

floating-point between 0 and 1. Values for individually calculated segments of lines are compared against 

reference human-generated sentences, using precision as the major evaluator.  

12.1.3 Inception 

We have compared our transformer-based approach with existing models and have arrived at the 

conclusion that our model performs better in most of the scenarios in comparison to other state-of-art 

existing methods. 

12.1.4 Hyper Parameters 

Vocabulary size and the length of the program snippet, both are kept substantially large, and experiments 

are carried out. The transformer model is trained using Adam optimizer with a grasping rate of 0.0001 

initially. The batch size is kept small (32) initially and the dropout rate is set to 0.2. The model is trained for 

a maximum of 150 epochs and if the validation performance does not enhance for 20 sequential iterations, 

then the training is stopped at an earlier stage.  

 Analysis of Results 

It is observed that, if the model is trained without camel case splitting and snake case splitting, there is a 

decrease in overall performance by 0.6 (BLEU) and 0.72 (ROUGE-L). Implementation of the copy 

attention model enhanced the overall accuracy by 0.44 (BLEU) for data-set of java programs.  
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1. Representation of positions of the tokens also has a substantial difference when absolute positions 

are compared to relative positions. The model which learns the absolute position of vectors 

performs slightly badly when compared to the model which learns the relative positions of all pairs 

of tokens. Along with this, K- the clip distance is also varied in the experimentation and the results 

are noted. Directional information is proved to be valuable. Also, distances of the format 2i  where 

i greater than 1 are seen to have comparable performance.  

2. Variation in the size of the model as well as changing the number of layers in attention, encoder 

and decoder, it is observed that a deeper model with more layers has greater performance than a 

model with lesser layer i.e. a wider model.  

3. Another additional set of experiments was carried out by using/not using UASTs. Input to the 

UAST generator is the source code. The output is a sequence of tokens which is the input to the 

Transformer model. It was observed that performance increases when the UAST module is used 

instead of directly extracting tokens from the source code. O(n * d2) is the transformer complexity 

where n is the length of the input vector. This implies that using UAST comes with additional costs.  

4. Analyzing the model qualitatively: Adam optimizer model is compared with the Vanilla optimizer 

model and the results of the experimentation are recorded. The self-attention model with copy 

feature enabled help in generating shorter and briefer summaries as the unique and rare words are 

taken into consideration. Also, tokens that occur frequently in the source code get a greater copy 

probability when relative positions are implemented as against absolute positioning. We conclude 

that this is due to the flexible learning of the relation between i/p vectors in accordance with only 

their relative positions.  

We tried varying the size of the model and recorded the matrix values for each model size. The results are 

recorded in the table given below. It can be observed that for the model size 768, the values for all 3 

matrices are relatively higher.  

 

Model size BLUE METEOR ROUGE-L 

256 15.7 21.52 48.62 

384 28.3 24.51 51.41 

512 44.2 25.92 52.73 

768 85.2 27.65 5.41 

 

Table 3. Study on the hidden size for our model on the Java dataset 

 

We also tried varying the number of layers of the model and noted the corresponding values of METEOR, 

ROUGE-L, and BLEU. We interpreted that as the number of layers goes on increasing, the summary 

generated by the model turns out to be more precise. Deeper the model, the better its performance. 
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Number of layers 
BLUE METEOR ROUGE-L 

3 22.2 41.27 51.38 

6 44.1 3.42 52.73 

9 66.3 45.30 54.04 

12 88.4 45.65 54.88 

Table 4. Study on the number of layers for our model on the Java dataset 

Another experimentation involved varying the Relative distance (p). The ablation studies were performed 

taking both directional and nondirectional aspects. The table given below shows the values recorded. It was 

observed that, for p = 32 and the directional model, the scores recorded were highest.  

 

Relative Distance 

(p) 

Directional BLUE ROUGE-L METEOR 

8 Yes 44.21 26.36 53.87 

8 No 42.61 24.66 51.12 

16 Yes 44.15 26.35 53.94 

16 No 44.07 26.32 53.52 

32 Yes 44.54 26.67 54.32 

32 No 43.96 26.29 53.26 

Table 5. Study on relative positional representations (in encoding) for Transformer 

 Conclusion 

We have demonstrated that the transformer model is better suited for source code summarization. We have 

proclaimed that in comparison to other existing state-of-art models, our model which consists of a self-

attention mechanism along with a copy of the attention model has a substantial performance. We have also 

shown that the Transformer model provides comparable performance when compared to LSTM, RNN 

models. Comparing the ROUGE-L, METEOR, and BLEU matrices of different approaches, we have 

shown that the Transformer model can be used for parallel computing as well. Hence, our model can be 

trained on CPU, GPU as well as using parallel computing. Our model is generic for many programming 

languages like java and python as it computes a UAST of the source code before training the dataset with 

the Transformer. In our future scope, we consider expanding to our languages like python, CPP, etc. We 

also want to apply techniques in other s/w token generation tasks which will include git/bitbucket commits 

of source code. We calculated the matrice scores (ROUGE-L, BLEU, and METEOR) for other approaches 

and compared our model with them. As it can be observed in the given table, our model outperforms most 

other models in all the 3 measures. It has a score of 44.61 for BLEU, 26.42 for METEOR, and 54.77 for 
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ROUGE-L. Hence, we show that the transformer model, with self-attention and copy attention, provides 

substantially better source code summaries in comparison to other state of art methods. 

 

Approach BLUE METEOR ROUG-L 

Code-NN 27.4 12.72 41.01 

Tree2Seq 38.1 22.61 51.62 

RL+Hyb2Seq 39.71 22.74 51.93 

Deep Com 40.8 23.12 52.76 

API+Code 41.2 23.81 52.23 

Dual Model 42.41 25.73 53.62 

Our Model 42.61 26.42 54.77 

Table 6. Comparison of our proposed model with other baseline models 

 Future SCOPE 

Nearly all the neural source code summarization perspectives follow the problem in a sequence to sequence 

model and hence results in sequence generation tasks and the building blocks of the model are mostly 

recurrent encoder-decoder networks with attention mechanisms. Recent works in code summarization have 

considered the structured and syntactic representation in the form of Abstract Syntax Trees (ASTs) through 

encoding techniques that use tree structure encoders like LST, transformer model, Graph Neural Network, 

etc. A structure-Based Traversal approach is also proposed. In our future work, we want to study the 

software engineering sequence generation tasks (like including commit messages from the git repositories, 

comments which are written in order to understand the code more efficiently, etc. in our summary) and 

apply them to our code structure in the Transformer. 
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