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Abstract 

Earthquakes are severe, unexpected, life-threatening catastrophes that affect all kind of living beings. It 

frequently results in the loss of life and property. Predicting earthquake       is the most important aspect 

of this field. With the golden age of the Internet of Things (IoT), an innovative new idea is to couple 

IoT technology with cloud and fog computing to improve the potency and accuracy of earthquake 

monitoring and forecasting. The embedded IoT-Fog-Cloud layered structure is adopted in this research 

to predict earthquakes using seismic signal data. This model transfers sensed seismic signals to fog for 

analysis of seismic data. At fog, Fast Walsh Hadamard transform is used to extract time and frequency 

domain features and PCA is employed to reduce the dimensionality of feature sets. Random Forest 

algorithm has been used to classify seismic signals into two different events, viz., earthquake and non-

earthquake accompanied by the real-time warnings. When compared to other classification models, 

implementation findings indicate that the Random Forest classifier achieves high values of specificity, 

sensitivity, precision, and accuracy with average values of 88.50%, 90.25%, 89.50%, and 92.66%. Hence 

make this framework more real-time compliant for earthquake prediction. 

 

 Introduction 

Earthquakes are the most devastating among all natural catastrophes. It has an adverse impact on millions 

of people across the globe, resulting in significant loss of life, massive damage to property, and 

infrastructure. The recent Nepal earth- quake with a magnitude of 7.8 killed over 8000 people and destroyed 

vast amounts of property [1]. The Mount Everest Avalanche, a result of this disastrous earthquake has 

induced numerous environmental changes, including a one-inch reduction in Mount Everest’s height [2]. 

It is necessary to predict where and when   large earthquake will occur in the future     in order to mitigate 

the risk. Alleviating seismic risk seems    to be a challenging task that necessitates the collaborative efforts 

of researchers, engineers, and administrators and must be approached at various time frames. 

Despite the fact that earthquakes are completely unpredictable, it is plausible to leverage some peculiarities 

which lead to rapid discovery of them using a proper combination technological infrastructures and real-

time services. Further with significant technological advancements in the fields of sensor networks, 

communications infrastructure, cloud computing, fog computing, and data analytics, it is now possible to 

establish an integrated earthquake monitoring and prediction framework. In this study, we proposed a 

robust IoT-fog- cloud centric monitoring system that aids in the real-time monitoring, seismic statistics 

assessment and associated events along with seismic data, ground-based data, and location- based data. The 

fog/cloud computing paradigm is regarded as a highly viable approach for meeting the ever-increasing 

demand for real-time monitoring and adequately dealing with growing amount of raw data and latency 

issues. The proposed framework comprises of three distinct but completely incorporated and interoperable 

layers: the data collection layer, the fog layer and the cloud layer. The first layer comprises of IoT-based 

sensors responsible for the acquisition of seismic data and transmission to fog layer for additional handling.  

Fog layer focuses on the analysis of seismic signals and the pre-processing of data for real-time decisions. 
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The cloud layer is accountable for accumulating and compiling of data that cannot be interpreted by the 

fog layer.  

The objectives of paper are: (a) a resilient iot-fog-cloud based framework for seismic monitoring, capable 

of meeting rigorous latency requirements and high accuracy and throughput, (b) fog computing enabled 

quick earthquake detection followed by real-time alerts, and (c) communication of analysis results with 

seismological departments and response agencies. 

The remainder of the paper is structured as follows: Section 2 outlines the related work in given field. The 

proposed framework is described in Section 3. Section 4 summarizes the implementation outcomes. Finally, 

in section 5, we present our conclusions. 

 Related Work 

This section examines several significant contributions to the field of earthquake prediction. Alphonse & 

Ravi [3] proposed the IoT based framework for earthquake prediction using wireless sensor networks. 

Fischer et.al. [4] proposed self organizing wireless mesh network based earthquake early warning system. 

Majhi et al. [5] put forth an integrated model based on neural network with machine learning and 

optimization algorithms for earthquake magnitude prediction. G Reddy [6] put forth a framework for 

earthquake prediction using wavelet Transforms and clustering methodologies. Cao et al. [7] proposed a 

model to predict earthquakes premised on crowdsourcing data of abnormal animal traits from both passive 

and active sources. Yamamoto et al. [8] formulated Stochastic Model using the wavelet packet transform to 

classify intricate time variant earthquake ground motions. Asencio et al. [9] employed regression algorithms 

to develop a cloud- based big data infrastructure for earthquake prediction in California. 

 Proposed Model 

This paper proposes an IoT-fog-cloud-based 

hierarchical structure for earthquake 

monitoring and prediction, as illustrated in 

Figure 1. The model composed of four layers: 

Seismic Data collection Layer, Fog Layer, 

Cloud Layer and Communication Layer. The 

first layer i.e. Seismic Data Collection Layer 

characterized by an extensive variety of IoT 

sensors mounted in seismic areas to acquire 

data on numerous seismic attributes. The 

amassed data is then divulged to the fog layer 

for extraction of features, selection of 

relevant features, and classification for real-

time earthquake detection. The Cloud layer is 

accountable for storing compiled data as well 

as fore- casting and predicting results, thereby 

aiding the Seismological departments and 

response agencies in mitigating and managing 

earthquakes effectively.   

 

Fig. 1: The Proposed System’s Layered Architecture 
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 Seismic Data Collection Layer 

The earthquake prediction system needs information about seismic signals and earthquake phenomena-

related indicators that directly or indirectly trigger seismic events. This task is carried out by deploying 

various available sensors in the study to collect data about seismic samples and identified indicators. The 

earthquake-related indicators are divided into two datasets: Geological dataset and Location dataset. 

Geological dataset involves information on seismic signals, ground motion, ground level variations, and 

seismic noise. The location dataset includes indicators such as latitude, longitude, and epicenter depth. 

 Fog Layer 

1) Data Preprocessing: When sensors record seismic data, the actual data is adulterated by various extrinsic 

influencing factors like noise and artifacts. This module’s function is to filter out all noise by passing 

seismic signals through a high- pass filter to curtail baseline drifts and cut off frequency. 

2) Feature Extraction: Due to the non-linear nature of signals and frequency variants with time, it is 

unfeasible to assess earthquake signals precisely, therefore applying an appropriate feature extraction 

method can optimize seismic signals monitoring. The fast Walsh Hadamard Transform (FWHT), 

designed mainly for signal compression, has been used in this study to extract features from earthquake 

signals [10]. The Walsh-Hadamard transform is a non-sinusoidal, orthogonal transformation method 

that converts a signal into   a set of basic functions defined as Walsh coefficients, which are square or 

rectangular waveforms with +1 or – 1 value [11]. Each Walsh function has a unique sequence value and   

is used to calculate the original signal frequency. The FWHT can identify signals with sharp 

discontinuities more accurately and reduces computation to O(n2) using minimal coefficients. As a 

result, it only requires nlogn addition and subtraction operations. The FWHT of a signal s(t) of length 

N is described as follows: 

rn =
1

𝑁
∑ 𝑠𝑡

𝑁−1
𝑖=0 𝐹𝑊𝐻𝑇(𝑛, 𝑖), 𝑛 = 1,2… . . , 𝑁 − 1 

where rn is the resultant coefficient and FWHT(n,i) is the applied transformation (Walsh functions) [10]. 

The coefficients extracted from the seismic signal in the form of features must be normalized to eliminate 

any potential errors caused by badly extracted features. Moreover, discriminating features of seismic 

signals are exemplified in the frequency and spectral segments, allowing signals to be classified more 

accurately and quickly. 

Seven statistical time-domain features and three frequency- domain features are included in the extracted 

feature. Mean, median, variance, standard deviation, kurtosis, root mean square, and skewness of the 

time-series signal are statistical time-domain features. The frequency-domain features are the dominant 

frequency, frequency amplitude, and signal energy. 

3) Feature Selection: The extracted feature vectors might be closely associated together. Hence, the feature set 

must be reduced to a minimal level but sufficient one. The principal component analysis (PCA) is a 

popular unsupervised dimension reduction algorithm that uses a linear transformation ma- trix to 

preserve the most important information in feature sets [12]. The set of original variables that retain the 

most information from the actual data expressed as Principal Components (PCs). The eigenvectors of 

the extracted features covariance matrix are used to construct the transformation matrix. Let     λe define 

the covariance matrix’s eigenvalues and ve the eigenvectors, then we can devise the transformation matrix 

by selecting the K largest λe’s and the respective eigenvectors. We can deduce a variety of most influential 

features by employing the transformation matrix to the actual extracted features. 

4) Classification: Once relevant features are extracted from the seismic signal, seismic data samples are 
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classified into different events such as Earthquake or Non-Earthquake. The Random Forest classification 

algorithm is used to classify seismic signals that have been characterized by various features obtained 

from feature selection component [13]. This algorithm is based on the machine learning approach, 

commonly used for classification problems. It is a group of several independent and unpruned decision 

trees that consolidate the outcomes of various trees for classification, making it a more precise classifier 

with better learning efficiency. Random Forest technique can address a huge set of input attributes  with 

short training and prediction times and can acknowledge learning and classification for non-linear data 

sample, emerged as a recommended approach for classification [14][15]. After classifying the current 

event as an earthquake, emergency alerts are delivered to seismological departments and response teams 

in order to effectively mitigate seismic risk. 

 Cloud Layer 

The goal of this layer is to store in- formation about seismic-oriented data and compiled results   of seismic 

event analysis at the fog layer.  This proved to be a massive benefit to the administration, response teams, 

seismological departments, and disaster management agencies in effectively mitigating and managing 

earthquakes. 

 Communication Layer 

The proposed system’s outcomes are significant inputs for different organizations and appropriate agencies 

that can intervene timeously to ameliorate the aftereffects. These outcomes can be prioritized by 

government agencies as the most important considerations while formulating short and long-term policies 

to manage and minimize the adverse effects of the earthquake. 

 Result Evaluation 

Various datasets are used for the implementation of the proposed paradigm, including a geological dataset 

comprising of earthquake seismic signals acquired from the National Research Institute of Earth Science 

and Disaster Prevention (NIED) [16] and a location dataset accessed from the United States Geological 

Survey (USGS) [17]. These datasets are gathered and integrated in the Amazon Elastic Compute Cloud 

(Amazon EC2). To extract discriminatory features, we used the fast Walsh- Hadamard transform to 

decompose a signal into a frequency domain by transforming its time domain. By applying FWHT to each 

seismic data file, 1023 coefficients are generated using MATLAB2019B. Figure 2 depicts the original seismic 

signal and the FWHT coefficients computed for earthquake and non-earthquake incidents. The calculated 

FWHT coefficients provide a visual representation of the signal in both the time and frequency domains. 

Several statistical time-domain and frequency-domain features extracted based on FWHT coefficients are 

shown in Table 1. 

TABLE 1: Features derived from seismic signal 
No Feature Domain 

1. Mean Time 

2. Median Time 

3. Standard Deviation Time 

4. Variance Time 

5. Kurtosis Time 

6. Skewness Time 

7. Root mean square Time 

8. Dominant frequency Frequency 

9. Frequency amplitude Frequency 

10. Signal energy Frequency 
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Fig. 2: Actual seismic signal and FWHT coefficients: (a) Earthquake (b) Non-Earthquake 

PCA creates new components that store the most valuable information of the features by capturing a high 

variance.  The eigenvalue-one metric is used in the analysis to assess various significant components to be 

preserved. Thus, we retained all of the components having eigenvalues above 0.5. Each component 

accounts for single unit of variance as an individual variable. Accordingly, components having eigen- values 

above 0.5 represented a greater variance over their contribution as independent variables and were chosen 

for further classification. Table 2 depicts the resultant principal components (PC1 to PC6) with eigenvalues 

above 0.5 and variance corresponding to individual extracted features. The PCA has downsized 10 features 

to 6 meaningful features. 

TABLE 2: Result of features reduction using PCA 

Features Eighenvalues Variance 

Mean 0.927 6.58 

Variance 0.856 6.02 

Kurtosis 0.712 5.44 

Skewness 0.689 4.86 

Dominant frequency 0.906 6.49 

Based on the identified features, the Random Forest classifier is implemented at the FC Layer to classify an 

event as earthquake or non-earthquake. The accurate classification of seismic data for earthquake detection 

is a major focus in our proposed model, the performance of the Random Forest classifier has been compared 

to the performance of other familiar classification algorithms, namely Multilayer Perceptron (MLP) [18], 

Naive Bayes [19], and C4.5 decision tree (DT) algorithm [20], using the WEKA 3.8 tool. The performance 

of various classifiers is assessed using performance metrics such as sensitivity, specificity, precision, and 

accuracy, as shown   in Table 3. These performance indicators are inferred from the confusion matrix [21], 

which contains true positive (TP), true negative (TN), false positive (FP), and false negative (FN) values. The 

confusion matrix of Random Forest classifier is presented in Table 4. 

The results clearly show that among several classifiers, the Random Forest classifier yields the highest 

classification accu- racy of 92.66%, the highest sensitivity of 90.25%, the highest specificity of 88.50%, and 

the highest precision of 89.50%, makes it an effective classifier for seismic event classification. Further, figure 

3 depicts the latency time, response time, and execution time of our proposed model for various numbers 
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of seismic samples. Because of the limited computation load, the model has a lower latency, response, and 

execution time for smaller samples. Also, Table 5 compares the performance of different classifiers with 

respect to possible error values. 

Fig. 3: Performance evaluation in terms of latency time, response time and execution time 

TABLE 3: Performance analysis of different classifier 

Classifier Sensitivity (%) Specificity (%) Precision (%) Accuracy (%) 

Random Forest 90.25 88.50 89.50 92.66 

Multilayer Perceptron 82.05 80.22 85.13 86.82 

Naïve Bayes 72.08 69.66 75.80 77.38 

C4.5 Decision Tree 67.43 65.71 68.24 70.24 

TABLE 4: Description of confusion matrix for the classification result 

Classified as       Earthquake                        Non-Earthquake 

Earthquake         92.90%                              7.10% 

Non-Earthquake         16.44%                              83.56% 

TABLE 5: Error performance of various classifiers 

Error values MLP C3.5 DT Naïve Bayes Random Forest 

Mean square error 0.1701 0.24 0.3108 0.2185 

Root mean square error 0.3616 0.4899 0.3921 0.3582 

Relative absolute error (%) 37.7682     53.2819 68.9937 30.8292 

Root relative absolute error (%)      76.2302      103.2882     82.6609 70.5279 

 Conclusion 

The current study proposed an iot-fog-cloud-based frame- work for earthquake prediction using seismic 

signals. The framework used the Fast Walsh-Hadmard Transform (FWHT) to extract information about 

the signal’s nonlinearity. PCA- based strategies make it easier to retrieve discriminatory features associated 

with seismic events. The Random Forest classifier is used to classify a set of features as earthquake or non-

earthquake event. The model’s performance evaluation shows that Random Forest classifier outshines 

other classification algorithms with a maximum accuracy of 92.66%, a maximum specificity of 88.50%, a 

maximum sensitivity of 90.25%, and a maximum precision of 89.50%. This study has enormous potential 
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for swift monitoring and detection of earthquakes, thereby mitigating their negative consequences. 

Furthermore, the proposed system yielded acceptable results, paving the way for a new knowledge domain 

in this area and assisting seismological departments as well as other disaster management authorities in 

developing informed interventions to prevent human life loss. 
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