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Abstract 

Seismic signals can be classified as natural or manmade by matching signature of similar events that 

have occurred in the past. Waveform matching techniques can be effectively used for discrimination 

since the events with similar location and focal mechanism have similar waveform irrespective of 

magnitude. The seismic signals are inherently non-stationary in nature. The analysis of such signals can 

be best achieved in multiresolution framework by resolving the signal using continuous wavelet 

transform (CWT) in time-frequency plane. In this paper similarity testing and classification of nuclear 

explosion and earthquake are exploited with correlation, continuous wavelet transform, cross-wavelet 

transform and wavelet coherence (WC) of P phase of seismogram. Clustering of seismic signals 

continuous wavelet spectra is performed using maximum covariance analysis. The proposed classifier 

has an average classification accuracy of 94%. 

 

Keywords: Correlation, Continuous wavelet transform, Wavelet coherence, Maximum covariance 

analysis. 

 Introduction 

The seismic signal comes from earthquake, nuclear explosion, mining explosion or rock bursts. Seismic 

signal classification is necessary for seismic monitoring or to identify the source that generates the signal. 

The seismic signal properties such as amplitude, frequency content, energy in different phases depends 

upon location, source etc. Traditionally, an analyst classifies events by visual inspection. This is a time-

consuming procedure that necessitates a considerable amount of knowledge and experience. Automatic 

seismic signal classification is important due to large amounts of data obtained continuously. An automatic 

classifier would raise the first alert and provide support to analyst. To monitor nuclear testing, we need to 

segregate earthquake signals from that of nuclear explosion. The North Korea conducted five nuclear tests 

in 2006, 2009, 2013 and twice in 2016, the seismogram of nuclear explosion recorded at MDJ station china 

is shown in Fig. 1. 

Presently nuclear explosion can be identified using different parameters such as event location. If a event 

occurred at aseismic region or known test site it may be nuclear explosion event. If the estimated depth of 

event is less than 10 km with high confidence then the event may be classified as nuclear explosion. 

Explosion is point phenomenon and radiates equal energy in all directions and generates P-waves and poor 

S waves. Earthquake occurs at fault slips and radiates different energy in different direction depending on 

fault plane. The P wave have less energy compared to S waves in earthquake. So, the P/S amplitude ratio 

can be used for event discrimination. The P/S spectral ratio is used for event discrimination [1]. The regional 

phases Pn, Pg, Sn and Lg spectra are calculated at different stations. The P/S spectral ratios Pg/Lg, Pn/Lg 

and Pn/S calculated and network averaged spectra is used for discriminating nuclear explosion and 

earthquake signals. It is difficult to detect S phase of a waveform hence these methods are indeterminate. 

The possibility to identify nuclear explosion using questionable waveform alone is long goal; However, 

many researchers used template matching method using cross-correlation for discriminating earthquake and 

nuclear explosion. [2]–[5] In this method the templates of earthquakes and nuclear explosion are chosen 
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from past events by human perception. Template must have higher signal-to-noise ratio. The array based 

cross correlation and multi-channel correlation is used for event detection. The limitation of this method is 

that the correlation is affected by micro seismic noise which varies with time. To mitigate the effect of noise 

the correlation is performed at different frequency bands in time domain. 

Automatic detection of seismic events using multi-channel correlation and classification using Hidden 

Markov Models at seismic array stations is proposed in [6]. Different time and frequency-based features are 

extracted from seismic signal and classified using neural network [7], [8], support vector machine [9], [10] 

and random forest classifier [11]. Real-time earthquake or noise signal classification using machine learning 

techniques for earthquake early-warning system is presented in [12]. Machine learning and empirical mode 

decomposition are used for the classification of multi-channel volcano-seismic events [13]. 

 

 
Fig. 1. Nuclear Explosion Events recorded at MDJ and INCN station of GSN 

 

However, nowadays Wavelet based techniques are used to discriminate earthquake and nuclear explosion 

[14]. The wavelet transform technique is a band pass filtering of signal at different center frequencies at 

various scales. For a nonstationary seismic signal, the wavelet coherence method [15]– [18] can be used for 

template matching. In this paper various wavelet based methods are discussed and subsequently the 

appropriate method is used to identify nuclear explosion and earthquake. 

 Data 

The seismic events used for classification are taken from Mudanjiang, China (MDJ) and Inchon, South 

Korea (INCN) stations of global seismogram network(GSN) stations. These events cover a 3-degree radius 

around North Korean nuclear test site Pungye Re (41.5° N, 129.1° E). For a period between 1 Jan, 2000 to 

31 March, 2017, there were 149 events for this region shown in Fig. 2. There are 5 nuclear explosions events 

indicated as red star and remaining earthquake events indicated in blue circles occurred at different regions 

within 300 km radius of nuclear test site of North Korea. The events selected for this study are given in 

Table II. For these 16 seismic event’s vertical component (BHZ) data was available at MDJ and INCN 

stations downloaded from IRIS website 

[19]. 
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 Methods 

 Cross correlation to discriminate earthquake and nuclear explosion 

The degree of similarity between seismograms is calculated using cross-correlation coefficients. An 

observed seismogram is a convolution of the source term, path effects, site effects and instrumental 

responses [20]. As a result, earthquake pairs with a high cross-correlation coefficient are assumed to have 

the same focal mechanisms and hypocenters. The template for cross-correlation is chosen from region of 

interest by human perception. Synthetic template is created for aseismic region. 

 
Fig. 2. Location Map of Region of Study 

 

Similar earthquakes are clustered into groups by researchers [5]. A waveform correlation method for 

identifying quarry explosion [2] is done by selecting master events from different mines. They used a p-

wave data segments recorded at 13- element array, this method successfully resolves two sources regions. 

Similar earthquakes do not necessarily have to have equal magnitudes, and the difference in location is 

permitted to some extent. Different cross-correlation thresholds are used to judge the similarity between 

waveforms depending on the desired target. 
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TABLE I LIST OF EVENTS 

Event 

No. 

Date Time Latitude Longitude Depth Magnitude Event Location 

Name 

Distance (Km) 

MDJ INCN 

1 13/02/2000 2:57:07 42.863 131.68 501.5 6 E. Russia-N.E. 

China Border 

Reg. 

258 736 

2 08/09/2000 14:18:21 41.766 130.897 582.3 4.9 North Korea 335 600 

3 16/04/2002 22:52:38 40.658 128.652 10 4.6 North Korea 447 394 

4 28/06/2002 17:19:30 43.763 130.665 568 7.3 E. Russia-N.E. 

China Border 

Reg. 

129 777 

5 15/08/2004 15:36:56 43.3722 131.1058 544.6 4.6 E. Russia-N.E. 

China Border 

Reg. 

185 756 

6 16/12/2004 18:59:12 41.9181 127.968 10 4 North Korea 327 507 

7* 09/10/2006 1:35:27 41.3107 129.0552 0 4.3 North Korea 370 474 

8 19/05/2008 10:08:36 42.4852 131.882 515.6 5.7 E. Russia-N.E. 

China Border 

Reg. 

301 714 

9 18/04/2009 3:56:31 42.815 130.6949 568 4.9 E. Russia-N.E. 

China Border 

Reg. 

220 686 

10* 25/05/2009 0:54:42 41.2937 129.0699 0 4.7 North Korea 372 473 

11 10/08/2009 12:42:53 43.5291 130.6883 575.5 4.8 E. Russia-N.E. 

China Border 

Reg. 

150 755 

12 18/02/2010 1:13:18 42.6027 130.6993 573.7 6.9 E. Russia-N.E. 

China Border 

Reg. 

242 666 

13 21/02/2010 7:29:08 42.4952 130.8793 561.5 4.5 E. Russia-N.E. 

China Border 

Reg. 

258 665 

14 10/05/2011 15:26:05 43.3199 131.0913 554.9 5.7 E. Russia-N.E. 

China Border 

Reg. 

189 751 

15* 06/01/2016 1:30:01 41.2996 129.0467 0 5.1 North Korea 371 473 

16* 09/09/2016 0:30:02 41.3228 128.9866 0 5.3 North Korea 371 473 

Nuclear explosion events are indicated by * symbol with event number. 
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The correlation for two time series x and y can be defined as inner product of x and time shifted version of 

y at each time instant. In seismology we often use correlation to clustering of similar events or detection of 

repeated events in past time series of seismic data. A normalized cross-correlation coefficient is used to 

determine the similarity between two signals. The normalized cross-correlation is obtained by dividing 

crosscorrelation by the square root of product of energy of x and 

y. 

  (1) 

 Continuous Wavelet Transform (CWT) 

Fourier transform is used to represent signal in frequency domain. Fourier transform gives information 

about frequencies present in signal. The basis function used for Fourier transform has infinite duration. 

This is useful in stationary signal having the same frequency content at all time. But it fails to differentiate 

between two signals having same frequency content but the frequencies occur at different times. The Short 

Time Fourier Transform provides time localization using windowed Fourier transform. The analyzing time 

window for STFT is fixed so it does not provide compact support. Wavelet is small wave which has finite 

duration. Wavelet transform gives timefrequency localization of signal using compact basis function. 

Seismic signal is of non-stationary nature. The time–frequency representation such as wavelet transform of 

seismic signal gives more information to analyze the seismic signal. If the wavelet function ψ ∈ L2(R) meets 

the following criteria, it is called mother wavelet [21]. 

1) Zero Mean Z +∞ 

2) Finite Energy 

ψ(t)dt = 0 

−∞ 

(2) 

  (3) 

3) Admissibility Condition 

  (4) 

A wavelet function may be real or complex. By scaling and translating the mother wavelet, a family of 

wavelet functions is obtained. 

  (5) 

Where, s is scaling parameter that controls width of wavelet (s¿1 stretching and s¡1 compression) and is 

translation parameter controlling location of wavelet. 

The complex Morlet wavelet also called modulated Gaussian is chosen as analyzing function for seismic 

data. The complex Morlet wavelet is symmetrical, non-orthogonal. This complex wavelet function provides 

amplitude and phase information, making it better suited to capturing oscillatory behavior in data. Morlet 

wavelet is crude wavelet defined by mathematical expression: 

 ψ0(η) = π−1/4eiω0ηe−η2/2 (6) 

Where non-dimensional frequency ω0 = 6 is taken to satisfy admissibility condition. 

Correlating psis,tau at different scales and shifting along the signal’s length at each instant of time yields 

wavelet transform coefficients. CWT of x(t) ∈ L2(R) is function of two variables, 

 
(7) 
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In discrete form, CWT of time series (xn,n = 1···N) having equal time interval δt is defined as convolution 

of xn with scaled and normalized wavelet function [16]. 

  (8) 

 C. Cross wavelet transform (XWT) 

The cross-wavelet transform of two-time series x(t) and y(t), is defined as 

  (9) 

Where, Wx and Wy are continuous wavelet transform of x(t) and y(t) respectively.  denotes complex 

conjugate of Wy. Cross-wavelet power is |Wxy|. 

  (10) 

The wavelet power spectrum gives local variance of time series at each time and frequency. Similarly, the 

cross-wavelet power spectrum provides local covariance of time series. So, crosswavelet power is measure 

of common power in time series. 

D. Complex Wavelet Coherency Complex wavelet coherency is defined as 

  (11) 

Where S denotes smoothing operator in both time and scale. In polar form, ρxy = |ρxy|eφxy. The absolute 

value of complex wavelet coherency is called wavelet coherency and denoted by 

Rxy, 

  0 < Rxy < 1 (12) 

The angle φxy of the wavelet complex coherency is called the phase-difference i.e. 

  (13) 

 E. Maximum Covariance Analysis (MCA) method 

The wavelet transform has been widely used in time series analysis. Wavelet analysis decomposes time series 

into timefrequency plane. The wavelet cross spectral analysis used to find association between two time 

series. In our problem to classify earthquake and nuclear explosion wavelet coherence and wavelet cross-

spectrum are used to identify and characterize common patterns in time series. Classification of timeseries 

using wavelet or cross-wavelet is complex problem. To classify time series hierarchical clustering is used in 

timefrequency plane. The matrix of dissimilarity is constructed to compare wavelet spectra. Maximum 

covariance analysis (MCA), a multivariate approach for comparing Spatiotemporal fields, compares wavelet 

spectra. 

MCA is also called singular value decomposition (SVD). Between each pair of wavelet spectra Wi and Wj, 

we compute the covariance matrix Rij [22]. 

 Rij = WiWjT (14) 

where, Wj
T represents transpose of Wj. On Rij, the singular value decomposition is used. 

 Rij = UΓV T (15) 

The matrix U and V T are orthogonal and contain singular vectors of Wi and Wj, respectively. Γ is a diagonal 

matrix whose diagonal elements are singular values in descending order. Each singular value corresponds 

to common patterns of decreasing importance between the two spectra. The SVD finds an orthonormal 

basis for each spectrum, determined by their respective singular vectors maximizing their mutual covariance. 
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The leading patterns are obtained by projecting the wavelet spectrum onto its respective singular vectors, 

with F being the maximum frequency common to both spectra, and show how respective frequency 

patterns evolve over time. 

f=F 

Lk
i (t) = X Uk × Wi(f,t) 

f=1 

(16) 

f=F 

Lk
j(t) = X Uk × Wj(f,t) 

f=1 

With a given number of leading patterns, N, it is possible to reconstruct the initial wavelet spectra using the 

relationship: 

k=N 

WiN = X Uk × Lki 

k=1 

k=N 

WjN = X Uk × Lkj (17) 

k=1 

The leading patterns and singular vectors obtained by the MCA over a given number of axes are compared 

to determine the distance between two wavelet spectra.By calculating the angle between each pair of 

consecutive segments, this metric compares two vectors. 

  (18) 

Lk
i (t) and Lk

j(t) are kth pair of leading pattern for Wi and Wj, having vector length n. The sum of angles 

obtained between each pair of leading patterns and singular vectors is a comparable metric. The distance 

was then calculated as a weighted average of the distances between each pair of singular vectors, with leading 

patterns held. We calculate the distance DT(i,j) between wavelet spectra i and j using the formula: 

 

 
Fig. 3. Histogram of cross correlation coefficient at MDJ station (left) and INCN station (right) 
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Where, weights (wk) are set equal to the sum of covariance explained by each axis (wk). The distance matrix 

suitable for cluster analysis is filled with distance DT(i,j). This distance matrix DT(i,j) is used for the 

hierarchical clustering of Nuclear explosions and earthquakes. 

 Results 

 Waveform matching for seismic signal identification 

1) Waveform Cross-correlation: Cross correlation between P-wave signatures in the waveform of 

earthquakes with nuclear explosions vis-a-vis the same between earthquakes/ nuclear explosions with 

themselves is examined. The 2006 nuclear explosion is said to be possibly fizzle. Shown in Fig. 1, although 

the seismogram of nuclear explosion is similar in nature, the cross-correlation coefficient of a 8 seconds (1 

sec before onset and 7 sec after onset) P phase of nuclear explosion conducted in 2006 with other nuclear 

explosion events is low for data recorded at both MDJ and INCN. Fig. 3 shows histogram for all 

combinations of cross correlation coefficients of nuclear explosion vs nuclear explosion (UNEUNE) and 

earthquakes vs nuclear explosion (UNE-EQ) pairs at MDJ and INCN stations. It can be seen that cross 

correlation of nuclear explosions with themselves is generally high. The most of event pairs of earthquake 

and nuclear explosion have low cross correlation coefficient at both stations. The nuclear explosion events 

can be discriminated at MDJ station by keeping cross correlation coefficient threshold of 0.45. There is 

overlapping between cross correlation coefficients of UNEUNE and UNE-EQ at INCN hence the nuclear 

explosion and earthquakes cannot be discriminated at INCN. The crosscorrelation coefficient is affected 

by SNR ratio. Hence we need to apply band pass filter to obtain high SNR to perform crosscorrelation. 

Here we cannot differentiate events using crosscorrelation based statistics. Thus, such a correlation based 

classifier is unreliable for single station. Thus, there is a need to build a reliable classifier. 

2) Classification based on Cross-Wavelet Transform (XWT): The cross-wavelet spectra of P phase (from 

onset to 20 sec) of nuclear explosion 2006-09-09 and 2016-01-06 is shown in Fig. 4. The Common power 

between two events is concentrated around 2-5 Hz for 0-3s to 8-12s. 

 
Fig. 4. Cross-wavelet spectrum of P phase onset to 20 sec of seismogram of nuclear explosion conducted 

on 2006-10-9 and 2016-01-06 recorded at MDJ station. The bottom waveforms shows normalized P phase 

of nuclear explosion seismograms of 2006-10-9 and 2016-01-06 respectively 
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3) Wavelet transform Coherence: Wavelet coherence is to find lead-lag relationship in time series or In 

above Fig. 1 seismograms of nuclear explosion events 2006-10-06 and 201601-06 looks similar in nature 

but cross-correlation between two events is low at both MDJ and INCN station. This indicates the two 

events are not similar. Wavelet coherence gives correlation between two time series at different scales. 

Wavelet coherence is not affected by the noise and hence doesn’t require any filter; whereas correlation is 

affected by noise and requires filter. Wavelet Coherence of nuclear explosion 2006-09-09 and 201601-06 

at MDJ and INCN station is shown in Fig.5 and Fig. 6 respectively. It is difficult to find common patterns 

in two time series using naked eye. Color representation of wavelet coherence makes it easy to find patterns. 

In below Fig. 5 and Fig. 6 the correlation at each frequency band can be found visually. The red color 

indicates 1(high correlation) while blue color indicates 0 (no correlation). Thus wavelet coherence plot 

gives better visualization of common patterns in both events localized in time-frequency plane. 

4) Classification Based on Continuous Wavelet Transform(CWT): Time-frequency analysis of nuclear 

explosion seismogram conducted by North Korea on 9 Oct, 2006 is shown in Fig. 7. For this analysis; 

broadband high gain vertical sensor data recorded at MDJ station China of GSN network (sampling 

frequency of 20 samples per second) is used. Morlet wavelet with a dimensionless frequency (ω0= 6) and 

total 74 scales (from 0.1 to 6.7806) with 12 octaves per scale is taken for decomposition. Resulting wavelet 

power spectrum shows the change in frequency content of seismogram signal with time. As shown in Fig. 

7, color map ranges from blue to red where Blue represents low power and red represents high power. It 

can be seen that for nuclear explosion, significant 

 
Fig. 5. Wavelet coherence of P phase from onset to 20 sec of nuclear explosion 2006-10-09 and 2016-01-

06 recorded at MDJ station china. The red color indicates the high correlation between two nuclear 

explosions. 
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Fig. 6. Wavelet coherence of P phase from onset to 20 sec of nuclear explosion 2006-10-09 and 2016-01-

06 recorded at INCN station. The red color indicates the high correlation between two nuclear explosions. 

 
Fig. 7. Wavelet power spectrum of P phase from onset to 20 seconds of seismogram of Nuclear explosion 

conducted by North Korea on 2006-10-09 recorded at MDJ station. The color-map of wavelet power 

spectrum is shown right where blue indicates low power and red indicates high power. The 5% significance 

level against red noise is shown by thick black contour. The cone of influence i.e. region affected by edge 

effects is shown in thick black line amount of energy is concentrated in frequency band of 1 Hz to 8 Hz. 
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Fig. 8. Clustering of Earthquake and nuclear explosion events 

The CWT plot gives better visualization of energy distribution of signal in time-frequency plane. Further, 

CWT is performed for both earthquake as well as nuclear explosion events. The objective is to classify 

earthquake and nuclear explosions based on wavelet magnitude spectrum. The dissimilarity between 

multiple wavelet spectra is computed using maximum covariance analysis method explained above. The 

hierarchical clustering of nuclear explosions and earthquakes is done using Ward method shown in Fig. 8. 

It shows the nuclear explosion events and earthquakes are classified correctly but the earthquake event 8 is 

wrongly classified as nuclear explosion. The closest events are nuclear explosion event 7 and earthquake 

event 8. Clustering achieved a classification accuracy of 94%. 

 Conclusion 

The proposed method cross-wavelet transform and wavelet coherence gives covariance and correlation 

between two-time series. These methods can be powerful discriminator of nuclear explosion and earthquake 

at single station. The clustering of seismic events using CWT is done without extracting any features from 

CWT. The cross-wavelet based methods are good for discriminating earthquakes and nuclear explosion. 

The preprocessing such as filtering is not required which is tough job to select frequency band to increase 

signal to noise ratio. This method can be used for online classification but the onset of the incoming events 

is detected accurately. 
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