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Abstract 

In recent decades, the concept of complex physiological systems has become more and more popular. 

The evaluation of the biological time series' dynamic complexity is an essential subject with possible 

applications such as the characterization of physiological states i.e. HRV, BP, and RESP signals and 

pathological disorders to the measurement of diagnostic parameters. The convergence of several 

physiological regulation processes is the cause of heterogeneity in cardiovascular time series, that 

consider many factors and function over several time scales, resulting not only the presence of short-

term dynamics but also the coexistence of long-range correlations in various physiological signals. The 

most popular approach to evaluating the dynamic complexity and irregularity of time series over 

multiple time scales is entropy based analysis. The most used approach is multiscale entropy (MSE) 

and refined MSE (RMSE). It is then added to the heart period time series, respiration time series, and 

blood pressure time series, measured in young subjects and old subjects under resting conditions. This 

research applies to short-term cardiovascular and cardiorespiratory variability documents that LMSE 

can better describe physiological processes' behavior causing biological oscillations at various time 

scales than RMSE. 
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 Introduction  

All physiological systems has an intrinsic features, which are readily evident in the time period of the 

variables calculated, depicts dynamical complexity of the system. The physiological systems, including the 

neurological system, the cardiorespiratory system, and the cardiovascular systems, gives complex signals in 

the output because of the combined activity of various physiological regulation processes coupled together 

via functional and structural ways[1]–[4]. Since these numerous and active processes normally operate on 

different time scales, the interest in statistical methods to evaluate a dynamic oscillation's complexity and 

irregularity has increased during recent years. Nonlinear analysis approaches and quantifying uncertainty 

can also be used to recognize the existence of nonlinear HRV underlying dynamics[5]. Previous research 

suggests that different nonlinearities can exist in various pathophysiological systems, which other nonlinear 

methods can see of analysis[6]. The research in this context has been discussed in. MSE has been used to 

determine the complexity of a time series of physiological systems. The time series is observed at the 

different time scales  for which it is served. According to the research, implementation of MSE is very 

common now a days in several fields of science [7], which made it a dominant method to enumerate the 

complexity and irregularity of physiological time series [8], [9] and in the analysis of the brain [9], [10] and 

cardiovascular and cardiorespiratory variability [9], [10] signals. The proposed work aims to test the effect 

of various estimation methods on the evaluation of nonlinearity and complexity in short-term HRV, BP, 

and RESP. We compare MSE, RMSE, and LMSE applied to HRV, BP, and RESP time series measured 

during different physiopathological states (healthy young and aging). 
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 Methods 

 Multiscale Entropy 

According to the study initiated by Costa et al.[11][2], Multiscale entropy is a measure that evaluates the 

complexity of a process over several time scales. The estimation is based, for one, on the rescaling of the 

observed process (i.e., on a particular set of time scales) and, by measuring its entropy amount, on 

determining the changing complexity of the rescaled process. 

The multiscale entropy incorporates two procedures: 

1. For a time-based series y, multiple time series is constructed by taking an average of data points. 

These data points must be lying in the non-overlapping windows. The length of window is increasing 

with the factor 𝜏. So, each element of the considerable time series, 𝑧𝑘
(𝜏)

, can be calculated according 

to the given equation: 

               𝑧𝑘
(𝜏)

= 1 𝜏 ⁄  ∑ 𝑦𝑖
𝑘𝜏
𝑖=(𝑘−1)𝜏+1                      (1) 

Where, 

τ = scale factor,  

1 ≤ k ≤ N/ τ.   

Length of individual series = N/ τ.  

If the scale is 1,  

considerable time series = original time series. 

2. The second method is by calculating Sample Entropy (SampEn)[2], and then it is designed as a 

function of a given scale factor. Sample Entropy is statistically regular and observes arrangements in 

a time series and then calculates the degree of regularity and predictableness. 

 Refined Multiscale Entropy 

      Multiscale Entropy has its two drawbacks majorly: the procedure for eliminating the fast temporal scales 

that tend to introduce spurious oscillations in the rescaled pathophysiological system time series and the 

fact that the coarse grain threshold parameter is held at an all-time value, which artificially decreases the 

MSE levels at a growing scale. Valencia et al. [10], implemented new technique named RMSE to overcome 

the limitations of pre-existing MSE measure. To overcome limitations of MSE, RMSE includes a filtering 

step to eliminate the occurrence of fast sequential scales from real processes followed by the downsampling 

process to eliminate redundancy that occurred in the outputs of first step.  

The two steps of the process are as follows: 

                𝑦𝑓(𝑛) =  ∑ 𝑎(𝑖)𝑦(𝑛 − 𝑖) − ∑ 𝑏(𝑘)𝑟
𝑘=1

𝑞
𝑖=0 𝑦𝑓(𝑛 − 𝑘),      (2) 

                                  𝑦𝑐(𝑛) =  𝑦𝑓(𝑛𝜏),                           (3) 

Where  

a(i), b(k) = filter coefficients, 

q, r = orders. 

 Linear Multi-scale Entropy 

     LMSE is based on the linear autoregressive (AR) model[12]. It assesses the multiscale complexity of 

linear Gaussian processes. Accordingly, for a process z, the linear autoregressive can be represented as 

                 𝑧(𝑛) =  ∑ 𝑐(𝑡)𝑧(𝑛 − 𝑡) + 𝑑(𝑛)
𝑝
𝑡=1 ,                 (4) 

Where  

z(n) = order of the process, 
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d(n) = an innovation process with the variance 𝜎𝑒
2, 

c(t), (t=1,….,p) =  linear regression coefficients [13], which is a function of the lag t, 

 Application to cardiovascular and cardiorespiratory variability series 

For demonstrating the implementation of the suggested approach to analyze the cardiovascular and 

cardiorespiratory variability series. To detect the multiscale complexity of HRV, RESP, and BP, time series 

were measured using a batch of young and old subjects in a resting state. 

 Fantasia Database 

      Fantasia database is one of the standard databases which the MIT-BIH sets up. The dataset comprises 

continuous ECG, BP, and RESP of 20 young subjects and 20 old subjects. The age group of young subject 

is between (21-34 years old) and the age group of elder subject is between (68-85 years old) undergoing 2hrs 

of the uninterrupted horizontal relaxing position [13]. Each subgroup of the dataset consist of same numbers 

of women and men. All subjects were instructed to be remained in resting supine position while making 

them watch the movie named "Fantasia (Disney 1940)" to help wakefulness. 

 Results and discussion 

       In this study, time domain analysis and frequency domain analysis of electrophysiological signals of 

standard dataset has been done to extract the features. These features are used in studying the complexity 

and irregularity of cardio-vascular and cardio-respiratory signals. The tables shown below the different 

parameters of hrv. 

 

 
Fig 1. Estimation of MSE for the of heart rate variability time series measurement of young and old age 

healthy group 

This work has explored the various multiscale complexity techniques applied to physiological signals like 

ECG, BP, and RESP to study their complexity [14], [15]. To examine the efficiency of the mentioned 

techniques, the techniques have been applied to the young and old healthy subjects of the standard database 

named "Fantasia Database" and compare LMSE and RMSE on the young and old age group. The multiscale 
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complexity analysis results of variability in heart rate, respiration, and blood pressure are depicted and 

represented in fig 1,2 and 3. Fig 1. represents the estimation of multi scale entropy for the time series of 

HRV. The plot depicts the multiscale entropy estimates (𝐶𝑥(𝜏𝑠)) determined as a function of the cut-off 

frequency of the LPF in the relaxing supine position for time series of HRV, Respiration, and BPV 

respectively, to eliminate  limitations of multiscale complexity [15][16]. 

 

 
Fig 2. Estimation of MSE for  the blood pressure variability time-series measurement of young and old 

age healthy group 

 

 
Fig 3. Estimation of MSE for the respiration variability time series measurement of young and old age 

healthy group 
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The complexity of HRV in the case of time series of young data is less than that of the old data in both linear 

multiscale entropy and refined multiscale entropy. The complexity of blood pressure variability and 

respiratory in case of time series of young data is higher than that of the old data. Some of the parameters of 

hrv on young and old subjects are represented in the following tables: 

 

Table 1.1: Features extracted using linear analysis on young subjects 

 Avg HRV Avg HR mean RR mean HRV 

young 1 110.568 9.0433e + 05 110.568 94.3361 

young 2 155.2463 6.4511e + 05 155.2463 42.5359 

young 3 126.7864 7.6944e + 05 126.7864 148.5908 

young 4 162.5637 5.1633e + 05 162.5637 69.8549 

young 5 162.4914 5.0201e + 05 162.4914 605.0539 

young 6 186.8267 3.6534e + 05 186.8267 60.6535 

young 7 130.5377 7.3325e + 05 130.5377 56.3108 

young 8 148.8081 6.1106e +05 148.8081 254.948 

young 9 165.2909 5.1372e + 05 165.2909 793.3272 

young 10 162.5637 5.1633e + 05 162.5637 69.8549 

  

Table 1.2: Features extracted using linear analysis on old subjects 

 Avg HRV Avg HR mean RR mean  

HRV 

old 1 131.2581 6.9536e + 05 118.3609 63.6028 

old 2 132.0544 7.1058e + 05 132.0544 1100.2506 

old 3 130.5699 7.2197e + 05 130.5699 56.7131 

old 4 125.4557 7.6128e + 05 125.4557 57.9909 

old 5 101.5678 9.9936e + 05 101.5678 1030.7491 

old 6 14205480 5.6444e + 05 142.548 45.4732 

old 7 134.235 6.4936e + 05 134.235 50.62 

old 8 123.2397 7.8178e + 05 123.2397 4.1012 

old 9 133.3632 6.9536e + 05 133.3632 83.8666 

old 10 101.3874 9.8633e + 05 101.3874 323.5037 

 

 Conclusion 

The study presents the multiscale entropy measure based on the theoretical grounds. It can analytically 

compute with the help of two methods, i.e., LMSE and RMSE. From the results, it will be observed that the 

LMSE method is more efficient than MSE and its modification RMSE. It is highly data-efficient in  

measuring the complexity of the physiological signals such as HRV, RESP, and BP. The above study can be 

extended in future for the comparison of mentioned techniques with other non-parametric entropy 

procedures. The future study can help in clarifying the importance of finding non-linearities in the multi-

scale time series analysis of physiological systems. 
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