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Abstract 

Neuro-amplifiers form an integral part of biomedical implantable devices. In this paper, we design a 

neuro-amplifier circuit with Miller compensation capacitor. The neuro-amplifier design is based on 

operational transconductance amplifier (OTA) with an active load. In this work, performance of the 

neuro-amplifier is enhanced by incorporating the Miller compensation technique.   Design and 

simulation of the neuro-amplifier circuit is performed using SPICE simulation software. Body biasing 

and feedback techniques are imparted to optimize the circuit performance. Simulation results show 

that the neuro-amplifier circuit has a mid-frequency gain and 3-dB bandwidth of 48dB, and 

16kHzrespectively.  

 

Keywords: Neuro-implantable device, neuro-amplifier, operational transconductance amplifier 

(OTA), bio-medical, Miller compensation. 

 Introduction  

In recent times, much focus has been on developing implantable biomedical devices for health-care 

applications [1-2]. A typical biomedical device constitutes sensor modules like chemical/biological sensors 

[3-11], thermal sensors [12], pressure sensors [13-14], signal processing units like wireless power units [15-

16], rectifier [17-18], amplifier [19-20], regulator [21], etc., to mention a few. Typically, the sensor and actuator 

modules are realized with micro-electro-mechanical systems (MEMS) technology. On the other hand, the 

signal processing elements are realized with conventional CMOS integrated circuit (IC) technology. Amongst 

various applications, development of neuro-implants for brain computer interfacing (BCI) is a challenging 

task especially due to its stringent performance metrics. Biomedical devices for monitoring neural activities 

have been the focus of research mainly for addressing issues related to neural disorders [22-23]. There are 

various sub-units that constitute a biomedical device for detecting neural signals. Neural activities are 

monitored with MEMS based multi-electrode arrays [24].Apart from neural stimulation [22-25], the other 

applications include recording and amplification of the analog neural signals using a neuro-amplifier [26-27]. 

The neural amplifier amplifies the action potential (AP) and local field potentials (LPF). Wireless modules 

are also typically integrated not only for wireless power transfer but also for signal transmission. Power 

supply transferred wirelessly is processed with power rectifier and AC-DC converter circuits. This regulated 

DC supply is used by other circuits in the IC. Wireless power transfer technique typically realized by using 

inductive coupled links has advantages such as effective silicon estate utilization due to elimination of on-

chip battery, high efficiency, improved device life time, to mention a few.   

 Design of the aforementioned building blocks is challenging, especially due to the stringent power budget 

in an IC and its trade-off with various performance metrics. In this paper, we investigate the design of a 

neuro-amplifier-a operational transconductance amplifier (OTA). Design and implementation of the circuits 

is performed using SPICE software.  
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 Architecture and circuit topologies  

The general architecture of a bio-implantable device is shown in Fig 1. Various modules in a bio-implantable 

device include the following: (i) wireless power transfer module, (ii) power rectifier, (iii) neuro-amplifier, (iv) 

neural simulator and (v) signal processing and communication module.  

 
Fig. 1. Block diagram of a general implantable device and its components. 

 

Typically, a bio-implantable device gauges neural activity with micro-electrode sensor arrays followed by 

amplification of neural signals using a neuro-amplifier. Subsequently, neuro-amplifier output undergoes 

digital signal processing so that it could be transmitted to the external block unit. The wireless power 

transfer is converted into a DC signal with a power rectifier circuit. 

 
Fig. 2. Typical schematic of an implantable device for neural recording [18] 

An implantable device for neural recording contains two integrated circuits (IC’s) as shown in Fig. 2[18]:  

(i) IC1:- It encompasses sensor arrays which gauges neuro-signals and feeds to the neuro-amplifier. The 

neuro-amplifier amplifies the neuro signal and passes it to subsequent signal processing elements for 

transmission, and (ii) IC2:- This IC transmits the processed signals. Further, it delivers wirelessly transmitted 

AC power using the power rectifier (AC-DC converter). 
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The neuro-amplifier is used for amplification of signals indicating neural activity i.e. action potential and 

LPF. Gain of the amplifier is determined by the ratio of input capacitance with the feedback capacitance, 

whereas the bandwidth is controlled by the feedback circuit. The given neuro-amplifier uses current mirror 

circuitry to increase output resistance for a high open loop gain as shown in Figure 3(a). The operational 

transconductance amplifier (OTA)with active load (current mirror circuit) takes the input signal as 

differential input and amplifies the differential signal (Figure 3(b)).OTA is a voltage controlled current 

source that is used to give high output impedance resulting in a high open loop gain. In order to reduce 

flicker noise, the gate area of input differential pair can be increased and biased in weak inversion to 

maximize the gm/ID ratio [25].To minimize the thermal noise effects the rest of the transistors are biased 

in strong inversion mode.  

 
(a) 

 

 

(b) 
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(c) 

Fig. 3. Schematic of (a) neuro-amplifier, (b) OTA circuit, and (c) OTA circuit with Miller compensation 

capacitor 

The OTA circuit with Miller compensation capacitors (C1 and C2)is shown in figure 3(c).Here, the 

capacitors C1 and C2 are connected to the drain of the current mirror MOSFET’s (M6-M9).  

 Results and Discussion 

In this section, we perform the design-optimization of the neuro-amplifier circuits shown in Figure3 using 

simulation software. The neuro-amplifier circuit (Figure 3) constitutes of the OTA that is designed for the 

required specification of neuro-amplifier circuit. OTA circuits are biased with a supply voltage of 0.8V.  

DC-operating points are fixed considering interplay between various performance metrics. The neuro-

amplifier is optimized for high gain-bandwidth product by careful design of transistor aspect ratio, biasing 

voltages and bias currents. From the frequency response plots shown in figure 4(a) and 4(b), it is observed 

that the neuro-amplifier circuit with Miller compensation capacitors has a higher mid-frequency gain of 48dB 

as compared to the original gain of 40dB. The 3-dB bandwidth of the neuro-amplifier with Miller capacitors 

has also improved to 16 kHz from 5 kHz. These Miller capacitors have a significant impact on the bandwidth 

and stability of the circuit. It is observed that with Miller compensation technique there is an increase in the 

bandwidth and stability of the amplifier. A comparison of present work with the reported works in treatise 

is summarized in Table I. The values of mid-frequency gain and 3-dB bandwidth obtained in this work are 

suitable for AP and LPF signal amplification. The designed amplifier depicts a mid-frequency gain of 48dB, 

and the 3-dB bandwidth is approximately 16 kHz. 
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(a) 

 

(b) 

 

(c) 

Fig.4. Neuro-amplifier circuit (a) frequency response of original circuit[25], (b) frequency response of 

the circuit with Miller compensation, and (c) transient response of the OTA. 
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Table 1: Comparison of the Simulated Neuro Amplifier with the Previous Works 

Parameters Ref  

[28]  

Ref  

[29]  

Ref  

[30]  

Ref  

[26] 

Ref  

[31] 

Ref  

[32]  

Ref  

[25] 

This 

work* 

Technology  1.5 µm  0.180 µm  0.35 

µm  
0.180 µm  0.5 µm  0.5 µm  0.180µm  0.180µ

m 

Supply   

voltage 

3V  1.8 V  3.3V  1.2 V  3 V  2.8 V  0.8V 0.8 V 

Power   

dissipation 

115 µW  6.25 µW  23.4 

µW  
N/A  4.04 µW  7.56 µW  0.8 µW  0.35 

µW 

Gain  39.3 dB  45.38 dB  73.9 dB  39.2 dB  62 dB  40.9 dB  39 dB  48 dB 

Low   

frequency  

0 Hz  5.02 Hz  1 Hz  0.25 Hz  N/A  N/A  1 Hz  1 Hz 

High   

frequency  

9.1 kHz  2.927 kHz  10 

kHz  
28 kHz  4 MHz  N/A  5 kHz  16 kHz 

Input   

referred   

noise 

7.8 µV  1.53   

µV/sqrt   

(Hz)  

1.3 

µV  
5.79   

µVrms 

59   

nVrms/sqrt  

(Hz) 

1.66 

µVrms  
0.8   

µVrms 

N/A 

 

 Conclusion 

This paper elucidates the design and implementation of aneuro-amplifier CMOS OTA circuit using SPICE 

software. The neuro-amplifier circuit was optimized for gain and bandwidth. Results show that the neuro-

amplifier circuit depicts a mid-frequency gain of 48dB, and 3-dB bandwidth of approximately 16 kHz. 

Circuit optimization and body biasing techniques were implemented to enhance circuit performance 

metrics.  
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