A PROMISING THERMOELECTRIC RESPONSE OF DIRAC SEMIMETAL Ca₃SnO: A FIRST PRINCIPLE STUDY

Tavneet Kaur* and M. M. Sinha

Department of Physics, Sant Longowal Institute of Engineering and Technology Longowal, Sangrur (Punjab) - 148106 (INDIA)

* Corresponding author

ABSTRACT

The inherent exotic electronic properties of Dirac Semimetals have drawn incredible research consideration in the field of condensed matter physics. The structural and transport properties of Dirac Semimetal Ca₃SnO have been computed by utilising Density Functional Theory (DFT) in combination with Boltzmann transport theory. For the relaxed structure of Ca₃SnO at zero GPa, the values of structural parameters have been calculated. The Seeback coefficient, electrical conductivity, electronic thermal conductivity and thermoelectric power factor have been analysed as a function of chemical potential at 300 K, 600 K, 800 K, 1000 K and 1200 K. The present investigation proposes Ca₃SnO as potential thermoelectric material over the wide range of temperature. The current DFT based calculations would further create a scope of experimental work to explore their technological applications.

Keywords: Dirac Semimetals. Thermoelectric Properties. First principle study. Antiperovskite structure

