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ABSTRACT
An evacuation planning problem gives a plan on existing road network for disaster management that attempts to send all evacuees
from the dangerous zone to the safer zone efficiently. The network flow problems provide important tools for modeling the evac-
uation tasks. The problems based on the model with flow conservation constraint, that permits an evacuee to be taken out of the
disastrous zone only if it can be sent into the safe zone, have been extensively studied for various evacuation scenarios. In this paper,
we study dynamic flow problems based on weak flow conservation constraints that allow for an intermediate node to serve as a
temporary shelter also with three distinct objectives and propose efficient solution procedures. The first is to maximize the number
of evacuees into the safe zones in priority order within the specified time horizon. The second is to achieve the first objective at
every time point within the time horizon. And, the third is to fulfill the demand (number of evacuees) at each of the safe zones in
minimum possible time horizon in priority order.

1 Introduction
The maximum flow problem, investigated by L. R. Ford and D. R. Fulkerson in 1950s, is the foundation of all

the mathematical optimization based evacuation planning problems. Time plays crucial role in modeling real-world
evacuation scenarios. The network flow problem known as maximum dynamic flow (MaxDF) problem, aiming to send
the maximum number of flow unit from the source into the sink in specified time horizon, has been introduced in
[7, 8]. There is a pseudo-polynomial algorithm based on the time-expanded network and a polynomial one based
on the temporally repeated flow with transit times on the arc as a cost coefficients to solve MaxDF problem on two
terminal network. The network flow problems with continuous time setting have been studied in [14, 6, 1, 15].

A problem closely related to a maximum dynamic flow problem is the quickest flow (QF) problem that sends a
given units of flow from the source to the sink in minimum possible time. This problem can be solved in polynomial
time by incorporating the algorithm to solve a maximum dynamic flow problem in a binary search framework. Using
Megiddo’s method of parametric search [12], a faster algorithm which solves the quickest flow problem in strongly
polynomial time can be obtained [4].

The problem that attempts to send a maximum number of evacuees from the source to the sink as earliest as possible
within given time horizon is the earliest arrival flow (EAF) problem. Gale [9] introduced EAF problem to obtain the
maximum amount of flow for every discretized time steps of evacuation time horizon. There exist exponential-time
exact algorithms also for the problem [13, 21]. A solution technique for the problem over two terminal series parallel
(TTSP) networks that runs with polynomial time complexity has been proposed in [20, 18].

Contraflow approach, reversing the direction of arcs, has also been considered in evacuation planning problems
that increases the outbound capacity of the arc and decreases the evacuation time. Here, arcs represent the lanes of a
road within the evacuation zone. The first analytical solutions for the maximum contraflow problem on static as well
as dynamic network are due to [17]. The evacuation planning problem with contraflow approach in continuous time
setting has been studied in [11] and [16]. For a broader overview on evacuation planning problems, we refer to the
survey articles [19] and [5].

All the flow problems discussed so far are based on the model with flow conservation at intermediate nodes for
which no evacuee is sent out of the source if it cannot reach the sink. There may be some intermediate nodes over
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evacuation network with holding capacity and are relatively safe as compared with the source which are useful to
support more evacuees. This paper considers evacuation planning problems over a network which consists of some
prioritized intermediate nodes with given storage capacities. The priority depends on how safe the intermediate place
is and/or how much capacity does it have. The flow may not be conserved at such intermediate nodes rather can be
held at them. The problem without node capacity can be solved efficiently using the notion of a temporally repeated
flows (TRFs) generated by repeating all possible source to sink path flows, see [7, 8]. As far as author know, there is
no polynomial time method to compute a temporally repeated flow that solves the problem on general network with
limited node capacity at intermediate nodes of given priority order.

We revisit the lexicographic maximum dynamic flow (LexMaxDF) problem introduced in [3] in Section 2 and
discuss its solution idea in Section 3. The lexicographic earliest arrival flow (LexEAF) problem and the lexicographic
quickest flow (LexQF) problem are introduced and solution procedures to them are proposed in Sections 4 and 5,
respectively. Section 6 extends the results in continuous time setting. Section 7 concludes the paper.

2 Model Description
An evacuation scenario is represented by a network N = (V,A,c(a),k(v),τa,T ) with |V | = n, |A| = m where V is

the set of nodes v denoting the crossings of road segments, A the set of arcs a = (v,w),v,w,∈ V denoting the road
segments, c(a) : c(a) ∈ Z+∪{0} is the arc capacity which is the upper bound for the evacuees to pass along the arc a

in a unit time, k(v) : k(v) ∈ Z+∪{0} is the node capacity which is the upper bound of evacuees to be held at node v,
τa a non-negative integer, the transit time which is the time required for an evacuee to travel along arc a and T is the
time horizon within which the evacuation process is supposed to be completed. Special nodes denoted by s and d are
the source and the sink, respectively.

For a discrete dynamic flow model, the non-negative flow variables f : A×{0,1, . . . ,T} → Z+ ∪{0} specify the
flow over time in the network N. More precisely, the number f (a, t) equals the number of flow units entering arc a at
time step t. The number of flow units entering arc a at time step t is assumed to be bounded by the capacity of an arc,
i.e.,

0≤ f (a, t)≤ c(a) ∀a ∈ A and ∀ t ∈ {0,1, . . . ,T} . (1)

In each time step t ∈ {0,1, . . . ,T}, the flow entering a node v ∈ V\{s,d} has to be at least as large as the flow
exiting out of it, i.e.,

∑
a∈δ−(v)

f (a, t− τa)− ∑
a∈δ+(v)

f (a, t)≥ 0 ∀ v ∈V\{s,d} and ∀ t ∈ {0,1, . . . ,T} . (2)

Here, δ−(v) and δ+(v) denote the set of arcs entering and leaving node v ∈V , respectively. Additionally, it is allowed
that flow is held at some node v ∈ V if k(v) 6= 0. To this end, we introduce variables h(v,T ) for all v ∈ V\{s} and
require

0≤ h(v,T ) =
T

∑
t=0

∑
a∈δ−(v)

f (a, t− τa)−
T

∑
t=0

∑
a∈δ+(v)

f (a, t) ∀ v ∈V\{s}. (3)

The total flow of evacuees leaving source s equals the total flow of the evacuees held at any node v ∈ V\{s} over
the time horizon T , i.e.,

T

∑
t=0

∑
a∈δ+(s)

f (a, t) = ∑
v∈V\{s}

h(v,T ). (4)
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With respect to the constraints from (1) to (4), the lexicographic maximum dynamic flow problem asks to send as
many flow units from source to sink as possible for each time step t ∈ {0,1, ...,T}, and as a secondary objective, a
maximum number of flow units to nodes other than the sink in the same manner. The latter is subjected to a prioritiza-
tion of the nodes v ∈ V from lower to higher priority as s = v1 � v2 � . . . � vn = d. This sorting reflects the fact that
certain destinations in an evacuation process have different priority. Thus, the objective function of the LexMaxDF
problem asks to lexicographically maximize the number of flow units held at the nodes within the pre-specified time
horizon T where the nodes are sorted in a given prioritization, i.e.,

lex max (h(vn,T ),h(vn−1,T ), . . . ,h(v2,T )) . (5)

In the context of evacuation modeling, this objective function can be interpreted as follows. It is vn = d, and thus, a
maximum flow from s to d has to be found in the first place. Since k(d) =+∞, the value of this flow is not bounded by
the node capacity. Then, let vi 6= d be the node with highest priority (other than the sink) having positive node capacity
k(vi). Due to the lexicographical optimization, the problem asks for a flow sending as much flow as possible to node vi

among the set of maximal s-vi flows. This idea is repeated until the flow to the node with lowest priority and positive
node capacity is eventually considered.

3 Solution to Lexicographic Maximum Dynamic Flow Problem
Consider a uniform path length (UPL) network N = (V,A,c(a),k(v),τa,T ) with prioritized nodes vi ∈ V sorted as

s = v1 � v2 � . . . � vn = d. A directed dynamic network is a uniform path length (UPL) network for which the sum
of the transit times on arcs on any possible path from the source s to the node vi, for all vi ∈ V , is equal, see Fig. 1.
The goal is to solve the lexicographic maximum dynamic flow problem on N in polynomial time using temporally
repeated flows. The main idea of the solution procedure of the problem is to find s−vi paths, for all vi ∈V : k(vi)> 0,
at all possible time steps t ∈ {0,1, . . . ,T} with corresponding flow value and send as many units of flow as possible
along the paths as long as possible. Such paths can be found by decomposing the flow on solving the lexicographic

minimum cost flow (LexMinCF) problem on N. The LexMinCF problem asks to lexicographically minimize the cost
Bi for sending the number of flow units f(vi) at each of the prioritized nodes vi ∈V , i.e.,

lex min (Bn(f(vn)),Bn−1(f(vn−1)), . . . ,B1(f(v2))) (6)

where the transit time τa ∀ a ∈ A is switched into the cost ba.

s
(0)

3,3 p (5)

5,2 q
(6)

2,1

4,1

2,2

d
(∞)

Fig. 1 A uniform path length (UPL) network N with source node s, arc capacity and transit times next to each arc and the node capacity
inside the parenthesis near by each node.

The minimum cost flow algorithm in [10], for example, can be applied to solve LexMinCF problem on N repeatedly
for each vi ∈V : k(vi)> 0 in given priority order on the corresponding residual network of N with additional arc (vi,s)

with capacity equal to k(vi) and transit time −(T + 1). This yields a set of all s− vi paths that could be temporally
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repeated from time step zero, denoted as Γvi , for each vi ∈V : k(vi)> 0. It is noteworthy to mention that the path γvi is
a chain of nodes and arcs in the network N starting at the source s and terminating at node vi.

The limitation of the temporally repeated flow along path on Γvi is that it may not induce an optimal solution to the
problem or the flow becomes infeasible for some node vi on N due to fixed node capacity. Thus, it is necessary to find
an extended set Γ E

vi
that contains all minimum cost s− vi paths that exist at any time t ∈ {0,1, ...,T} on the residual

network of N with respect to the optimal flow f(vi+1) at previous immediate prioritized node vi+1. It is also necessary
to push flow units of corresponding values along each path as long as possible, unless k(vi) is satisfied. Moreover, the
flow is pushed along the paths in Γ E

vi
with the strategy of saving unused paths for the use of next less prioritized node

vi−1 without violating the optimality at vi. This is assured by selecting the path with highest Ft(γvi), the time step at
which the flow along γvi stops to get repeated, among the paths γvi ∈ Γ E

vi
with highest It(γvi), the time step at which the

flow along γvi starts to get repeated, at the first and so on. This procedure yields an optimal solution to the LexMaxDF
problem on UPL network N in polynomial time.

4 Lexicographic Earliest Arrival Flow Problem
Since it is usually not known when the disaster will actually happen, it is desirable to organize an evacuation in such

a way that as many evacuees as possible are saved. An earliest arrival flow problem aims to optimize the evacuation
process for every time step within pre-specified time horizon T . A LexMaxDF problem that fulfills the objective
function (5) at each time step t ∈ {0,1, . . . ,T} together with the constraints (1) to (4) is a lexicographic earliest arrival

flow problem. That is, the objective of a LexEAF problem is to send a maximum number of evacuees at the possible
earliest time from the disastrous zone to the safety zone together with relatively safe zones within the given time
horizon.

It is clear that every earliest arrival flow is a maximum dynamic flow for given time horizon. However, the converse
is not always true for general network. In the following, a solution procedure is proposed that obtains a lexicographic
maximum dynamic flow on a typical network and claimed that this flow schedule has an earliest arrival property.

Let us consider the LexMaxDF problem on a uniform path length two terminal series parallel (UPL-TTSP) network
N = (V,A,c(a),k(v),τa,T ) with prioritized nodes vi ∈ V sorted as s = v1 � v2 � . . . � vn = d with k(vi) ∈ {0,+∞}.
The solution procedure discussed in Section 3 is applied to solve the LexMaxDF problem where the minimum cost
flow algorithm [2] is applied to solve the LexMinCF problem. The extended set Γ E

vi
induces an optimal dynamic flow

for each vi on N in polynomial time. Moreover, the network N being a two terminal series parallel in structure, this
flow has an earliest arrival property [18].

5 Lexicographic Quickest Flow Problem
Let us restrict the node capacity k(v) to be fulfilled as an upper bound as well as a lower bound by the total flow

value that is supposed to be held at the node vi on N = (V,A,c(a),τa,k(v)) in the LexMaxDF problem discussed in
Section 3. Then the limited node capacity k(v) can be taken as demand, say, µ(v)) at v : ∀v∈V\{s}. This consideration
allows to see a dynamic flow problem on N with demands at nodes and asking for a minimum time to satisfy these
demands in given priority order. In the following, we formally define this problem which is termed as lexicographic

quickest flow problem.
Consider a UPL network N = (V,A,c(a),τa,µ(v)) with prioritized nodes vi ∈V s= v1 � v2 � . . .� vn = d such that

∑i µ(vi) = 0 where µ(vi) ∈ Z+∪{0} is the demand at the node vi. The negative demand at the source s is termed as
supply. Moreover, we restrict the arc capacity c(a) for each arc a ∈ A to be strictly positive. Then the LexQF problem
finds a feasible dynamic flow fvi of given value µ(vi) on the network N with prioritized nodes vi from the source s

to the node vi which sends the given µ(vi) units of flow from s to vi in the minimum number T (µ(vi)) of time units
obeying the capacity constraints (1), the weak flow conservation constraints (2) for time horizon T (µ(vi)) and the
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modified form of constraint (3) as

T (µ(v))

∑
t=0

∑
a∈δ−(v)

f (a, t− τa)−
T (µ(v))

∑
t=0

∑
a∈δ+(v)

f (a, t) = µ(v) ∀v ∈V\{s} (7)

where T (µ(v)) is the minimum time that is required to send µ(v) units of flow from the source to the node v. Moreover,
the Equation (4) holds true due to our consideration ∑i µ(vi) = 0. Together with these assumptions, the objective of
LexQF problem is

lex min (T (µ(vn)),T (µ(vn−1)), . . . ,T (µ(v2))) . (8)

The existence of lexicographic quickest flow on N follows from the fact that N is a connected network and capacity
c(a) is positive for each a ∈ A. The solution procedure to the LexQF problem is similar to the binary search method
of solving a quickest flow problem in [4]. Since we are interested in finding such minimum time Tm for each node
vi ∈V : µ(vi)> 0 in a priority order, the maximum flow computation technique developed in Section 3 is adopted as
a subroutine of the procedure with necessary modification. Due to the nature of the construction of a maximum flow
using this technique, the maximum flow of value µ(vi) obtained for time horizon T , could also be possible to find in
lesser time horizon T ′ for some nodes vi. That is, it cannot be guaranteed that the time T at which the dynamic flow of
value µ(vi) can be sent to vi is the minimum time to attain this flow value. One should check whether the same flow
value is attained for some lesser time point T ′.

6 Solutions with Continuous Time Setting
The lexicographic maximum dynamic flow problem, the lexicographic quickest flow problem and the lexicographic

earliest arrival flow problem modeled on the network N with continuous time setting for time horizon T can also be
solved efficiently by applying the notion of natural transformation of flows over discrete time setting [6]. The notion
states that the amount of flow, say fd , that arrives at the node w through the arc a = (v,w) at time step t in the discrete
time setting is equal to the amount of flow, say fc, arriving at w through the arc a = (v,w) during the unit interval of
time at the beginning of time step t, i.e., fd(a, t) := fc(a, [t, t +1)) for all t ∈ {0,1, . . . ,T −1}.

7 Concluding Remark
The domain of evacuation planning problems based on the network flow model has been flourished with efficient

solutions with various network attributes. A common feature of the problems is that the flow function obeys flow
conservation constraints at each intermediate node. In particular, maximum dynamic flow problem, earliest arrival
flow problem and quickest flow problem have great applicability in evacuation planning problems due to realization
of time constraint. In this paper, we studied these problems that lexicogaphically achieve the goals on the network
with prioritized intermediate shelters of given capacities. Evacuation problems with intermediate shelters could be
extra benefit during disasters. We proposed polynomial time solution techniques for the LexMaxDF problem and
LexQF problem modeled on UPL network and for LexEAF problem modeled on UPL-TTSP network. Investigation of
solution to these problems modeled on more general network would extend the domain and scope of their applicability
in real world evacuation plans.
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