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ABSTRACT 

There is a bound on the speed of evolution of quantum system. Out of many bounds few bounds have 

been studied. In this article we study the effect of quantum speed limit in correlated noisy channel. 

Our model serves as a platform for a detail study of the effect of quantum speed limit on correlated 

noise channel. It has found that how the quantum speed limit varies by increasing the correlation 

between consecutive uses of noisy channels. 
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I. Introduction 

It is arguably impossible to isolate a particular system from surrounding subjected to information loss 

in the form of dissipation and decoherence. When a quantum system interacts with surroundings the 

system mixes with the environment. This is defined in terms of open quantum system [1]. There is 

always loss of information in the form of dissipation and decoherence [2]. There is various method 

that has been put forward in order to suppress decoherence. One of the methods is by using memory 

[3,4], to retrieve information which was lost due to environment effect. The loss of information is of 

two types: Markovian and Non-Markovian. The concept of memory arises when the interaction of 

system with environment is non-Markovian. Many theoretical approaches [5-12] has been put forward 

to explain non-Markovian memory effect. The concept of memory as non-Markovianity is different 

from the concept of memory as correlated quantum channels [13,14]. 

In this paper, we focus on Markov noise to study the quantum speed limit evolution proposed by 

Macchiavello and Palma [13]. There is a bound to the speed of evolution which was derived from 

time-energy uncertainty relation for a system undergoing completely positive trace preserving map 

(CPTP)[. Two different kind of Markov noise has been taken into consideration one is amplitude 

damping channel and phase damping channel. We are making an attempt to connect the concept of 

correlated noise and quantum speed limit. It is well known that there are many applications of 

quantum speed limit, including quantum metrology [15], computational limits of physical systems 

[16], quantum optimal control algorithm [17].  

We generalise master equation for two qubit atomic system [18], with modelling environment as a 

thermal radiation field. The dynamics of global system environment. There is a system-environment 

interaction and we are generalizing decay rate of non-Markovianity in terms of bound of speed of 

evolution.  

In this work, we establish a relation between ratio of correlated speed versus the degree of 

Markovianity of the paper are as follows. In Sec. II, we introduce the out turn of correlated Markov 

Noise. In Sec III, we discuss the of effect quantum speed limit on noise channel. In Sec. IV, we 

introduce the dynamics of correlated channels on quantum speed limit. In Sec. V, we introduce the 

effect of master equation on quantum speed limit.  In Sec. VI we give our conclusions. 

https://www.aijr.in/
https://www.aijr.in/about/policies/copyright/
https://doi.org/10.21467/proceedings.100
https://doi.org/10.21467/proceedings.100.16


Natasha Awasthi et al. AIJR Proceedings, pp.156-161, 2020 

 

 

 

 Proceedings of International Conference on Applied Mathematics & Computational Sciences (ICAMCS-2019) 

 157 

I. Correlated Markov Noise 

We begin with a brief discussion of correlated Markov noise channels subsequent use of many 

numbers of channels generates some correlation. Such kind of channel is called correlated Markov 

noise channel. Initially we have an input state followed by completely positive trace preserving map 

(CPTP). Let initial state is ρ followed by CPTP map given as 

                                         𝛜 (ρ) = ∑ 𝐸𝑖ρ 𝐸𝑖
†
                                                                  (1) 

 where 𝐸𝑖 are Kraus operators of channels which satisfy CPTP map. Based on Kraus operator 

approach the state under noise is given by [19] 

𝛜 (ρ) = (1-µ) ∑ 𝐸𝑖𝑗𝑖𝑗 ρ𝐸𝑖𝑗
†

+ µ ∑ 𝐸𝑘𝑘𝑘 ρ𝐸𝑘𝑘
†

                              (2) 

In above expression, the probability is µ to remain correlated, and the probability is 1-µ for the 

operation to remain uncorrelated.  

                A well-established model with Markovian noise has been taken into consideration. The 

time dependent Hamiltonian [20] of a qubit is given by H(t) = k𝚪(t)𝜎𝑧. 

 where Γ(t) is an independent random variable. We are dealing with time dependent Karus 

operator to establish a model for Markov noise channel. The dynamics can be defined in terms of 

following Kraus operator.  

                                                  𝐾1(𝜈) = √
1+𝜑(𝜐)

2
   I                                                      (3) 

                                                   𝐾2(𝜈) = √
1−𝜑(𝜐)

2
   𝜎𝑧                                             (4) 

Where we have 𝜑(𝜐) =  𝑒−𝜈 [cos 𝑢𝜈 +
sin 𝑢𝜈

𝑢
] and u =  √(4𝜏)2 − 1  with 𝝊 = 

𝑡

2 𝜏
 being the time scale. 

Calculations for Kraus operator   done for two qubit channel as well as done for correlated channels.  

II. Effect quantum speed limit on noise channel 

Evolution of closed system follows a unitary map. For a dynamical evolution there is a limiting case. 

The evolution of a quantum state dictates the speed of quantum computation. Quantum physics 

imposes limit on the speed of evolution of state: this is the quantum speed limit (QSL) [21]. The 

maximum evolution of a quantum system give rise to the limit of dynamical speed evolution [22,23]. 

There arises quantum speed limit when there is a finite exchange between system and environment. In this 

work we present quantum speed limit for noisy dynamics also.  The minimum time evolution for closed 

quantum system is given as 

                                          τ = 
𝜋ћ

2 ΔE
                                                                         (5) 

ΔE is the energy variance, this inequality is known as the Mandelstam-Tamm bound [25]. A bound can 

be derived for the map represented in terms of time-independent Kraus operator [24]. 

                                  𝜏𝜃 ≥ 
2𝜃2

𝜋2  
√𝑡𝑟[𝜌]2

∑ ‖Kα(t,0)ρ Kα
† (t,0)‖α

                                                     (6) 
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The time evolution of quantum system 𝜌0can be written as 𝜌𝑡 = ∑ Kα ρ Kα
†

𝛼 . Let the map is governed 

by evolution.  

                𝑓̇(t) = 
1

𝑡𝑟ρ0
2 ∑ 𝑡𝑟[𝜌0𝐾𝛼𝜌0𝐾𝛼

†]𝛼  

On solving above equation by Cauchy- Schwarz inequality a bound can be derived. Parametizing f(t) 

= cosθ  we have  

                                                  𝜏𝜃 ≥
2𝜃2

𝜋2  
√𝑡𝑟[𝜌]2

∑ ‖Kαρ Kα
† ‖α

                                                   (7) 

We exactly compute plot QSL for the following cases: 

III. Dynamics of correlated channel on quantum speed limit      

(a) Amplitude noises 

Consider the dynamics of amplitude damping channel. Kraus operator for two qubit system are as 

follows [21]. 

 𝐴1 = (

√1+𝜑(𝑡,𝜏)

2
0

0
√1+𝜑(𝑡,𝜏)

2

) 

𝐴2=  (

√1+𝜑(𝑡,𝜏)

2
0

0
√1+𝜑(𝑡,𝜏)

2

) 

where 𝜑(𝜐) =  𝑒−𝜈 [cos 𝑢𝜈 +
sin 𝑢𝜈

𝑢
] and u =  √(4𝜏)2 − 1  with 𝝊 = 

𝑡

2 𝜏
 being the time scale, τ refers 

to the degree of non-Markovianity [26]. In this paper we establish a link between ratio of speed limit 

of uncorrelated and correlated channel and the degree of non-Markovianity. Using equation (6) and 

doing straight forward calculation ratio of quantum speed limit decreases with 𝜏. Fig 1 demonstrate 

the decay of speed of evolution for a two qubit amplitude Markov noise. The ratio of quantum speed 

limit gradually decreases with increase in τ. 

 

FIG 1: Ratio of uncorrelated-correlated speed decreases with increase in degree of Markovianity.  
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(b) Phase damping noises: 

Phase damping noises describes a quantum noise with decay of off- diagonal element. The Kraus 

operator for a single qubit can be represented in terms of Pauli operators 𝜎0 = 𝐼 and 𝜎3. The Kraus 

operator for two-qubit system can be represented as [27]. From Fig 2. we see that the evolution of 

ratio of speed limit for a two-qubit system increases with increase in τ. 

 

FIG 2. The speed of time evolution increases with increase in degree of non-Markovianity. 

IV. The effect of Master equation on quantum speed limit.   

Let us consider the master equation constructed for a global system-bath interaction. Consider a given 

system with initial stste coupled to an environment.  The global reversible dynamics is governed by 

unitary evolution and reduced dynamics of system is given by reduced dynamical map.  One can 

assume Markovian dynamics when the time scale of environment is much smaller than that of system 

[28]. 

                                   
dρt

dt
 = L𝜌𝑡                                                              (8) 

In this section, we compute quantum speed limit (QSL) using master system for two-qubit atomic 

system [29].  
𝑑𝜌

𝑑𝑡
 = Lun(ρ) + Lcor(ρ)                                                   (9) 

Here 𝐿𝑢𝑛 represents uncorrelated Lindbladian operator and 𝐿𝑐𝑜 the correlated operator.  

𝐿𝑢𝑛 = ∑ γ𝑖𝑖=1,2 (N+1)(𝜎𝑖
−𝜌𝜎𝑖

+ −
1

2
(𝜎𝑖

−𝜎𝑖
+𝜌 + 𝜌𝜎𝑖

+𝜎𝑖
−)) 

and  𝐿𝑐𝑜𝑟 =  ∑ γi𝑖=1,2 N(𝜎𝑖
−𝜌𝜎𝑖

+ −
1

2
(𝜎𝑖

−𝜎𝑖
+𝜌 + 𝜌𝜎𝑖

−𝜎𝑖
+)) 

where N is Planck’s distribution function.  

𝜎1
− = 𝜎− ⨂ 𝐼, 𝜎1

+ = 𝜎+ ⨂ 𝐼, 𝜎2
− = 𝐼⨂σ−, 𝜎2

+ = 𝐼⨂σ+ 
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The 𝛾𝑖 are called decay parameter. The bound for the speed of evolution is calculated for the 

correlated channel having generator in the form of Eq(9). Using Eq. (6), we determine ratio of 

uncorrelated-correlated bound on speed of evolution for this model. We establish a link between ratio 

of bound of evolution as a function of a. Here, a is a measure of the degree of non-

Markovianity[29].The generalization of time-dependent Lidbladian for uncorrelated channel can be 

calculated in a straightforward way using Eq.6. Similar calculation can be done for the sum of 

correlated-uncorrelated noise. The coupling depends on the qubit position 𝑟𝑛, and the interaction 

Hamiltonian is proportional to √𝛾𝑖𝑗. We studied this model in two cases: 

Case 1: Consider the case when 𝛾1 = 𝛾2 = 𝛾3 = 𝛾; we generalise Lindbladian form of master 

equation for uncorrelated channel.  

Case 2: Consider the case when 𝛾12 = 𝛾21= 𝛾a(𝑘0𝑟12) where 𝛾𝑖𝑗 is the multi qubit interaction of 

composite system with bath. We determine the bound of evolution as upper and lower bound using 

triangle inequality.  

 

FIG 3: Figure shows that, as the degree of non-Markovianity a is increased, the speed limit for 

correlated Markov noise increases for upper bound and for lower bound the speed limit decreases.  

V. Conclusions 

In conclusion, we have proposed a scheme for detailed study of correlated channel under Markov 

noise. Different types of Markov noise channel have been taken into account, such as amplitude 

damping channel and phase damping channel. The effect of Markov noise on correlated channels has 

been discussed in detail. We summarize the results as follows. Firstly, the ratio of QSL for 

correlated/uncorrelated channels generated for amplitude damping channel and phase damping 

channel was calculated. The speed of evolution for correlated channel under Markov noise decreases 

for amplitude damping channel and increases for phase damping channel. Secondly, global system 

environment interaction is taken into consideration. We considered a two qubit atomic model and the 

master equation for a two qubit atomic system consists of Lindbladian operator for correlated and 

uncorrelated noise. We studied the detailed effect of Markov noise for this two qubit atomic model. 

We have further extended our case for the ratio of bound of evolution. We have shown that there are 

two bounds of evolution for this model. The speed of upper bound for the model increases whereas 

the speed of lower bound decreases. 
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