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ABSTRACT

The main objective of this paper is to analyse the solution of two-dimensional Laplace’s

equation using an efficient scheme, which is based on collocation of modified bi-cubic B-

spline functions. This scheme is applied to obtain the approximate solution of Laplace’s

equation with Dirichlet boundary conditions for two illustrative examples. For these

examples, the results obtained by this scheme have been compared with exact solutions

and solutions available in literature to check the accuracy and versatility of present

scheme.

Keywords: Modified bi-cubic B-splines, Laplace’s equation, Hockney method.

1 Introduction

Consider the well known two-dimensional Laplace’s equation defined on a rectangular domain

Ω=[a,b]×[c,d] given by

uxx + uyy = 0, (1)

with Dirichlet boundary conditions,

u(a, y) = f0(y), u(b, y) = f1(y) c ≤ y ≤ d
u(x, c) = f2(x), u(x, d) = f3(x) a ≤ x ≤ b

}
(2)

Laplace’s equation plays a very important role in science fields like fluid dynamics, heat transfer,

gravitation, electromechanics, magnetism and many others [1]. Laplace’s equation is the steady

state heat equation in the study of heat conduction. It satisfies the velocity potential for the steady
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flow of incompressible non-viscous fluid. Laplace’s equation arises in static deflection of a mem-

brane. Laplace’s equation is used in determining structure of astronomical object from spectrum.

Laplace’s equation is associated with equilibrium or steady state problems such as steady state

temperature distribution, steady state stress distribution, steady state potential distribution and

steady state flows.

In the last few decades, a huge amount of work has been done to analyse the solutions of two-

dimensional Laplace’s equation using various numerical techniques. Khaled [2] developed sinc and

adomian decomposition method to investigate Laplace’s equation. Shabbir et al. [3] employed a

Galerkin technique to solve two-dimensional Laplace’s equation. Hamid et al. [4] analysed Laplace’s

equation by using bi-cubic B-spline interpolation method. Patil and Prasad [5, 6] obtained the

numerical solution of Laplace’s equation using grid less techniques, finite difference method, fi-

nite element method and Markov chain method. Buralieva et al. [7] presented wavelet-Galerkin

method to solve two-dimensional Laplace’s equation. A recursive form of bi-cubic B-spline colloca-

tion method for Laplace’s equation has been employed by Reddy et al. [8]. Chopade and Rastogi

[9] employed finite difference method and finite element method for solution of two-dimensional

Laplace’s equation.

In this paper, a scheme based on modified bi-cubic B-spline functions has been employed to obtain

the numerical solution of two-dimensional Laplace’s equation with Dirichlet boundary conditions.

To demonstrate the efficiency and accuracy of the present scheme, convergence and comparison

studies have been accomplished for two test problems.

The brief outline of the paper is as follows: In section 2, modified cubic B-spline functions and mod-

ified bi-cubic B-spline functions are explained. The description of scheme to solve two-dimensional

Laplace’s equation with Dirichlet boundary conditions is also given in section 2. Section 3 consists

of two examples to verify the efficiency and accuracy of the proposed scheme. The conclusions are

given in section 4 to summarize the findings of this work.

2 Description of Method

Spline is a tool which was originally used by draftsman to draw a smooth curve passing through

the specified points in a plane. A B-spline is a spline function that has minimal support with

respect to a given degree, smoothness and domain partition.

Divide the rectangular domain Ω=[a,b]×[c,d] into a mesh of rectangular finite elements designated

by set of mesh points {(xi, yj): i=0(1)n, j=0(1)m}. The intervals (xi−1, xi), i=1(1)n taken along X-

axis are of same length hx and intervals (yj−1, yj), j=1(1)m taken along Y-axis are of same length hy.
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Let the approximate solution Unm(x, y) of Laplace’s equation (1) be [10]

Unm(x, y) =
n∑

i=0

m∑
j=0

wi,jφi,j(x, y). (3)

where, wi,j are to be determined. The modified bi-cubic B-spline function φi,j(x, y) is given as

φi,j(x, y) = φi(x)φj(y) (4)

where, modified cubic B-spline basis functions φi(x) are given as

φo(x) = ψo(x) + 2ψ−1(x)

φ1(x) = ψ1(x)− ψ−1(x)

φj(x) = ψj(x), for j = 2(1)(n− 2)

φn−1(x) = ψn−1(x)− ψn+1(x)

φn(x) = ψn(x) + 2ψn+1(x)


(5)

where, ψ−1,ψo,ψ1,...,ψn−1,ψn,ψn+1 are cubic B-spline basis functions over the interval [a, b] defined

as follows

ψi(x) =
1

h3x



(x− xi−2)3, x ∈ [xi−2, xi−1)

(x− xi−2)3 − 4(x− xi−1)3, x ∈ [xi−1, xi)

(xi+2 − x)3 − 4(xi+1 − x)3, x ∈ [xi, xi+1)

(xi+2 − x)3, x ∈ [xi+1, xi+2)

0, otherwise


. (6)

At a particular knot xi, there exist only three cubic B-splines ψi−1, ψi, ψi+1 with positive values.

The values of φi(x), φ′i(x) and φ′′i (x) along x-direction at different knots have been tabulated, re-

spectively, in Tables 1- 3. Similarly, along y-direction, the values φj(y), φ′j(y) and φ′′j (y) can be

obtained by replacing i with j, x with y and hx with hy. Each modified bi-cubic B-spline φi,j(x, y)

covers sixteen elements of domain Ω and each finite element of domain Ω is covered by sixteen

modified bi-cubic B-splines with their peaks being at the knot (xi, yj) of the domain.
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Table 1: Values of modified cubic B-spline functions along x-direction

x φo(x) φ1(x) φ2(x) · · · φn−2(x) φn−1(x) φn(x)

xo 6 0
x1 1 4 1
x2 1 4 1
· · · · · · · · · · · ·
xn−2 1 4 1
xn−1 1 4 1
xn 0 6

Table 2: Values of first derivatives of modified cubic B-spline functions along x-direction

x φ′o(x) φ′1(x) φ′2(x) · · · φ′n−2(x) φ′n−1(x) φ′n(x)

xo − 6

hx

6

hx
0

x1 − 3

hx
0

3

hx

x2 − 3

hx
0

3

hx
· · · · · · · · · · · ·
xn−2 − 3

hx
0

3

hx

xn−1 − 3

hx
0

3

hx

xn 0 − 6

hx

6

hx
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Table 3: Values of second derivatives of modified cubic B-spline functions along x-direction

x φ′′o(x) φ′′1(x) φ′′2(x) · · · φ′′n−2(x) φ′′n−1(x) φ′′n(x)

xo 0 0 0

x1
6

h2x
−12

h2x

6

h2x

x2
6

h2x
−12

h2x

6

h2x
· · · · · · · · · · · ·
xn−2

6

h2x
−12

h2x

6

h2x

xn−1
6

h2x
−12

h2x

6

h2x

xn 0 0 0

The values of wi,j on the boundary of the domain Ω can be obtained by using approximate solution

(3) in the boundary conditions (2).

The boundary condition u(x, c) = f2(x) gives

6



6 0

1 4 1

1 4 1

· · · · · · · · ·
· · · · · · · · · · · ·

1 4 1

1 4 1

0 6


(n+1)×(n+1)



w0,0

w1,0

w2,0

· · ·
· · ·

wn−2,0

wn−1,0

wn,0


(n+1)×1

=



f2(x0)

f2(x1)

f2(x2)

· · ·
· · ·

f2(xn−2)

f2(xn−1)

f2(xn)


(n+1)×1

. (7)
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The boundary condition u(x, d) = f3(x) yields

6



6 0

1 4 1

1 4 1

· · · · · · · · ·
· · · · · · · · ·

1 4 1

1 4 1

0 6


(n+1)×(n+1)



w0,m

w1,m

w2,m

· · ·
· · ·

wn−2,m

wn−1,m

wn,m


(n+1)×1

=



f3(x0)

f3(x1)

f3(x2)

· · ·
· · ·

f3(xn−2)

f3(xn−1)

f3(xn)


(n+1)×1

. (8)

The boundary condition u(a, y) = f0(x) leads to

6



4 1

1 4 1

· · · · · · · · ·
· · · · · · · · ·

1 4 1

1 4


(m−1)×(m−1)



w0,1

w0,2

w0,3

· · ·
· · ·

w0,m−3

w0,m−2

w0,m−1


(m−1)×1

=



f0(y1)− 6w0,0

f0(y2)

f0(y3)

· · ·
· · ·

f0(ym−3)

f0(ym−2)

f0(ym−1)− 6w0,m


(m−1)×1

.

(9)

The boundary condition u(b, y) = f1(x) gives

6



4 1

1 4 1

· · · · · · · · ·
· · · · · · · · ·

1 4 1

1 4


(m−1)×(m−1)



wn,1

wn,2

wn,3

· · ·
· · ·

wn,m−3

wn,m−2

wn,m−1


(m−1)×1

=



f1(y1)− 6wn,0

f1(y2)

f1(y3)

· · ·
· · ·

f1(ym−3)

f1(ym−2)

f1(ym−1)− 6wn,m


(m−1)×1

.

(10)

The tridiagonal system of equations (7-10) can be solved by Thomas algorithm to obtain the values

of wi,j on the boundary of domain Ω. Now, satisfying the equation (1) on the internal mesh points

of domain Ω, a system of (n-1)×(m-1) equations is obtained, which is as follows:
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n∑
i=0

m∑
j=0

wi,jφ
′′
i (xk)φj(yk′) +

n∑
i=0

m∑
j=0

wi,jφi(xk)φ′′j (yk′) = 0, k = 1(1)(n− 1), k′ = 1(1)(m− 1).

(11)

The system of equations (11) can be expressed in matrix form as follows:

(φ′′ ⊗ φ+ φ⊗ φ′′)



−→
δ1
−→
δ2

· · ·
· · ·
−→
δ m−2
−→
δ m−1


(m−1)×1

=



−→γ1
−→γ2
· · ·
· · ·
−→γ m−2
−→γ m−1


(m−1)×1

(12)

where, ⊗ is the Kronecker product and

φ′′⊗φ=
1

h2x



−12A 6A

6A −12A 6A

· · · · · · · · ·
· · · · · · · · ·

6A −12A 6A

6A −12A


(m−1)×(m−1)

,

A =



4 1

1 4 1

· · · · · · · · ·
· · · · · · · · ·

1 4 1

1 4


(n−1)×(n−1)

,

φ⊗φ′′= 1

h2y



4B B

B 4B B

· · · · · · · · ·
· · · · · · · · ·

B 4B B

B 4B


(m−1)×(m−1)

,
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B =



−12 6

6 −12 6

6 −12 6

· · · · · · · · ·
· · · · · · · · ·

6 −12 6

6 −12


(n−1)×(n−1)

,

−→
δj =



w1,j

w2,j

· · ·
· · ·

wn−2,j

wn−1,j


(n−1)×1

for j = 1, 2, ..., (m− 1) ,

−→γ1=



−12(w0,0 + w1,0 + w2,0 + w0,1 + w0,2)

−12(w1,0 + w2,0 + w3,0)

· · ·
· · ·

−12(wn−3,0 + wn−2,0 + wn−1,0)

−12(wn−2,0 + wn−1,0 + wn,0 + wn,1 + wn,2)


(n−1)×1

,

−→γj =



−12(w0,j−1 + w0,j + w0,j+1)

0

· · ·
· · ·
0

−12(wn,j−1 + wn,j + wn,j+1)


(n−1)×1

for j=2,3,...,(m-2),
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−→γ m−1 =



−12(w0,m + w1,m + w2,m + w0,m−1 + w0,m−2)

−12(w1,m + w2,m + w3,m)

· · ·
· · ·

−12(wn−3,m + wn−2,m + wn−1,m)

−12(wn−2,m + wn−1,m + wn,m + wn,m−1 + wn,m−2)


(n−1)×1

.

The system of equations (12) has been solved using Hockney method [11]. This scheme has com-

putational cost O(p.log(p)), where, p=(n-1)(m-1), the total number of internal mesh points. Once

the values of wi,j on internal mesh points are obtained, the approximate solution Unm(x, y) can be

achieved at any point of the domain Ω, substituting wi,j in relation (3).

3 Numerical experiments and discussion

In this section, two numerical examples have been considered to verify the accuracy and efficiency

of present scheme. All numerical computations have been performed here by using MATLAB. To

verify the accuracy of the present scheme following two error norms have been calculated

Absolute error at mesh point (xi, yj) = |u(xi, yj)− Unm(xi, yj)|
Absolute error norm (L∞) =max

i,j
|u(xi, yj)− Unm(xi, yj)|

where, u(xi, yj) is the exact solution and Unm(xi, yj) is corresponding approximate solution at mesh

point (xi, yj) obtained by present scheme.

Example 1 : Consider the two-dimensional Laplace’s equation over the domain [0, 1]×[0, 1],

uxx + uyy = 0, (13)

with boundary conditions,

u(0, y) = 5, u(1, y) = 5

u(x, 0) = 5, u(x, 1) = 5

}
(14)

The exact solution of this problem is

u(x,y)=5

To test the convergence, the absolute errors in approximate solution Unm(x, y) have been calcu-

lated for different number of meshes 10×10, 15×15 and 20×20 and the absolute errors in solution
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Unm(x, y) for 10×10 number of meshes have been presented in Table 4. It is observed that the

approximate solutions are correct upto 15 decimal places. L∞ error norm and CPU time to find

approximate solution Unm(x, y) for different number of meshes are reported in the Table 5. The

approximate solutions of Laplace’s equation in example 1 have been depicted in figure 1 for 10×10

number of meshes.

Table 4: Absolute error in Unm(x, y) for example 1 for 10×10 number of meshes

Mesh point Absolute error

(0.1,0.1) 8.8818e-16

(0.5,0.1) 8.8818e-16

(0.9,0.1) 1.7763e-15

(0.3,0.3) 8.8818e-16

(0.7,0.3) 1.7763e-15

(0.9,0.3) 8.8818e-16

(0.1,0.5) 8.8818e-16

(0.5,0.5) 1.7763e-15

(0.9,0.5) 1.7763e-15

(0.1,0.7) 8.8818e-16

(0.7,0.7) 1.7763e-15

Table 5: L∞ and CPU time for example 1 for different number of meshes

Number of
meshes

L∞ CPU
time
(sec.)

10×10 1.4210e-14 0.03

15×15 4.8850e-14 0.04

20×20 1.4743e-13 0.06
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Figure 1: Approximate solution Unm(x, y) of example 1 for 10×10 number of meshes

Example 2 : Consider the two-dimensional Laplace’s equation over the domain [0, 1]×[0, 1] as

taken by Hamid et al. [4]

uxx + uyy = 0,

with boundary conditions

u(x,0)=x(1-x),

u(x,1)=0,

u(0,y)=0,

u(1,y)=0,

The exact solution given by Hamid et al. [4] is

u(x, y) =

∞∑
i=1

−4sin(iπx)((−1)i − 1)sinh(iπ(1− y))

sinh(iπ)i3π3
(15)

To choose appropriate number of meshes, the absolute errors in approximate solution Unm(x, y)

at different mesh points for 5×5, 10×10, 15×15 and 20×20 number of meshes have been computed

and absolute errors in Unm(x, y) for 20×20 number of meshes are given in Table 6. It is observed

that obtained results are correct upto 4D places. L∞ error norm and CPU time for calculation

of Unm(x, y) for different number of meshes have been presented in Table 7. It is observed that

the error decreases as the size of mesh gets finer and finer. Further, it demonstrates that the

present scheme is quite economical with respect to computational time. The approximate solution

for 20×20 number of meshes have been depicted in figure 2. Table 8 presents the comparison of

approximate solutions of Laplace’s equation with exact results and those given by Hamid et al. [4]

and Reddy et al. [12] for 5×5 number of meshes. It is observed that the solutions obtained by

present scheme using modified bi-cubic B-spline functions are better than those obtained by other

two methods.
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Table 6: Absolute error in Unm(x, y) for example 2 for 20×20 number of meshes

Mesh point Absolute error

(0.1,0.5) 1.5451e-05

(0.1,0.7) 1.1090e-06

(0.1,0.9) 6.9824e-07

(0.3,0.7) 4.7856e-06

(0.3,0.9) 1.4955e-06

(0.5,0.5) 6.4274e-05

(0.5,0.9) 1.5908e-06

(0.7,0.7) 4.7856e-06

(0.7,0.9) 1.4955e-06

(0.9,0.3) 7.9266e-05

(0.9,0.5) 1.5451e-05

(0.9,0.9) 6.9824e-07

Table 7: L∞ and CPU time for example 2 for different mesh sizes

Number of meshes L∞ CPU
time
(sec.)

5×5 3.5119e-02 0.10
10×10 7.2649e-03 0.15
15×15 1.7932e-03 0.20
20×20 9.5347e-04 0.23

Table 8: Comparison of approximate solutions for example 2 for 5×5 number of meshes

Mesh point Exact Present scheme Hamid et al.[4] Reddy et al. [12]

(0.25,0.25) 0.0832 0.0581 0.0788 0.0779

(0.25,0.5) 0.0364 0.0375 0.0335 0.0323

(0.25,0.75) 0.0137 0.0138 0.0123 0.0115

(0.5,0.25) 0.1159 0.0826 0.1121 0.1094

(0.5,0.5) 0.0513 0.0531 0.0473 0.0441

(0.5,0.75) 0.0194 0.0195 0.0174 0.0157

(0.75,0.25) 0.0832 0.0581 0.0788 0.0685

(0.75,0.5) 0.0364 0.0375 0.0335 0.0276

(0.75,0.75) 0.0137 0.0138 0.0123 0.0098
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Figure 2: Approximate solution Unm(x, y) of example 2 for 20×20 number of meshes

4 Conclusion

In this paper, the two-dimensional Laplace’s equation with Dirichlet boundary conditions has been

solved by using modified bi-cubic B-spline functions. To check the efficiency and accuracy of present

scheme, two examples of two-dimensional Laplace’s equation have been considered. The absolute

errors and absolute error norms (L∞) are presented for both examples. To choose appropriate

number of meshes, absolute errors have been calculated for different number of meshes. Further,

approximate solutions and absolute errors for present scheme have been compared with two methods

namely bi-cubic B-spline interpolation method and bi-cubic B-spline collocation method. It is

observed that present scheme gives better results in comparison to other methods. The approximate

solutions using 10×10 and 20×20 number of meshes are presented for example 1 and example 2,

respectively. The calculations have been carried out using MATLAB.
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