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ABSTRACT
The @-homotopy analysis method has been successfully implemented to study the nonlinear time-fractional generalized Burger
equation with proportional delay (in brief, )�GBE%�), considering fractional derivative of Caputo type. The computed results are
analyzed in terms of absolute error (and relative error norms in the fourth order approximation) for two test problems of nonlinear
)�GBE%� . The relative error is reported for U = 0.8, 0.9, 1 for different values of G, C ∈ [0, 1]. To guarantee the convergence of
the results, ℏ-curves are depicted graphically for different values of the fractional order (U). The findings shows that the proposed
results are much better than the existing results and approaches towards the exact solution.

Keywords: Fractional integral operator; Caputo derivative; time-fractional generalized Burger equation with proportional delay;
q-homotopy analysis method, convergence-control parameters.

1 INTRODUCTION
Time delay differential equation is characterized as a differential equation where the unknown function is given

at a specific time while the value of the function depend on the previous time-state simultaneously. In general for a
dynamical model, we assume the hypothesis that the system depend only at the present time-state, which need not
to be feasible for each physical phenomena. This is why it is quite worth to examine and analyze the delayed system
via some effective techniques [6]. Moreover, time-delay involves in various realistic models occurred in economics,
biology, physics, chemistry, engineering andmedicine. Delay differential equation perform a significant role in vigorous
physical/biological models for both integer order and fractional order system, see [7, 8, 9, 15].

Burger’s equation is a generalisation of Navier-Stokes equation,represents an elementary nonlinear system for
turbulence flow.Delayed Burger equation plays an important role in kinematic wave theory of traffic flow,reaction-
diffusion and convection-diffusion systems. In general, the study of such delayed equations is a very tough experi-
ence.Nevertheless, numerous vigorous effective schemes have been introduced to study such types of the differential
equations with delay, for instance, predictor-corrector algorithm [15], pseudospectral scheme [10], spectral collocation
schemes [11], reduce differential transform method [12, 13], Adams-Bashforth-Moulton algorithm [14], and a scheme
based on the definition of GL [16].The nonlinear fractional partial differential equations with proportional delay have
been studied via Extended FRDTM [21] (and extended DTM [12] for U = 1 only), HPM [17], FVIM[18], HPTM
[19] and Natural transform decomposition method [20]. Tanthanuch [22] implemented group analysis method for
nonhomogeneous inviscid Burgers equation with delay.

Liao [3]has suggested homotopy analysis method (HAM), which is very rigorous scheme to study several kind
of nonlinear equations, e.g.,differential-integral, algebraic equations, PDEs, ordinary differential equations as well as
coupled systems and fractional models of these equations.Different from all perturbation and non perturbation methods
for nonlinear problems HAM produce an effective and easy technique to assure the convergent solutions by choosing
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different base functions[4], see [1, 2, 5, 28, 29] for more on @-HAM. Best of my knowledge, the nonlinear ) �GBE%�

has not been studied via @-HAM,therefore we have adopted @-HAM to study the following nonlinear ) �GBE%� (1):

N[DU
C q] = DU

C q(G, C) − F
(
G, q(A0G, B0C), qG (A1G, B1C), .., q (<)G (A=G, B=C)

)
= 0 (1)

For 0 < U ≤ 1, with the initial condition: q(G, 0) = 5 (G), G ∈ [0, 1], where N is the nonlinear operator, 5 is a smooth
function, q(G, C) is the unknown to be computed, andDU

C q(G, C) is the Caputo derivative q ∈ C` (` ≥ −1) of order U:

DU
C q (C) := J<−UC

(
3<q

3C<

)
, < − 1 < U ≤ < ∈ N, (2)

where J U
C q(C) (0 < U ≤ 1) is Riemann-Liouville integration of q ∈ C` which is defined by J 0

C q (C) =q(C),

J U
C q (C) = 1

Γ(U)

t∫
t0
(t − g)U−1q (g) dg, C0 ≥ 0 when U > 0,

It is easy to see that J U
C (C − C0)W =

Γ(1+W) (C−C0)W+U
Γ(1+W+U) , for C ≥ C0; function q : R+ → R is said to be in class C`, ` ∈ R if

∃ ℓ ∈ R (ℓ > `) and ℎ ∈ � [0,∞) with property that q(C) = Cℓℎ(C) for each C ∈ R+. In addition if q (<) ∈ C`, < ∈ N,
then q ∈ C<` [23, 24]. If we set<−1 < U ≤ < ∈ N, q ∈ C<` , ` ≥ −1 and W > U−1, then Caputo operatorDU

C have the

following properties: (0)DU
C J U

C q(C) = q(C); (1)J U
C DU

C q(C) = q(C) −
<−1∑
:=0
D:
C q (C0)

(C−C0):
Γ(1+:) , C0 ≥ 0; (2)DU

C (C − C0)W =
Γ(1+W) (C−C0)W−U

Γ(1+W−U) .We refer interested readers to [23, 24, 25, 26, 27] and the papers therein for details on the properties of
these operators.

2 DESCRIPTION OF OPTIMAL q-HOMOTOPY ANALYSIS METHOD
For Caputo time fractional PDEs:N[DU

C q] = 0, < − 1 < U ≤ <, the zeroth order deformation equation can be
written as-

(1 − @)ℓ[Ψ(G, C; @) − q0 (G, C)] = @ℏ� (G, C)N [DU
C Ψ(G, C; @)], @ ∈ [0, 1] (3)

ℓ be an auxiliary linear operatorwith ℓ[�] = 0,� a constant, 0 ≠ ℎ→auxiliary parameterwhile 0 ≠ � (G, C) →auxiliary
function. Note that as @ varies from 0 to 1, the solution Ψ(G, C; @) varies from q0 (G, C), the initial guess to q(G, C),the
exact solution of the original problem (Equation 3 yields Ψ(G, C; 0) = q0 (G, C) and Ψ(G, C; 1) = q(G, C)).

As mentioned in [3], Ψ(G, C; @) has its Taylor series expansion of form: Ψ(G, C; @) = q0 (G, C) +
∑∞
9=1 q 9 (G, C)@ 9 ,

where q 9 (G, C) = 1
9!
m 9Ψ(G,C;@)

m@ 9

���
@=0

. Set ℓ, ℏ, q, � so as the computed results converges to q(G, C) as @ = 1, i.e.,

q(G, C) = Ψ (G, C; 1) = q0 (G, C) +
∞∑
9=1

q 9 (G, C) (4)

Write q̄ 9 = {q0, q1, . . . , q 9 }, then 9-th order deformation equation (the equation which is obtained by differentiating
9-times equation 3 with respect to @, then substitute @ = 0 and divide the equation by 9!) is

ℓ[q 9 (G, C) − j 9q 9−1 (G, C)] = ℏ� (G, C)R 9 [q 9−1 (G, C)],∀ 9 ≥ 1, q0 (G, C) =
<−1∑
A=0

q (A ) (G, 0+) C
A

A!
, (5)

Where R 9 [q 9−1 (G, C)] = 1
( 9−1)!

m 9−1 (N [DUC Ψ(G,C ;@) ])
m@ 9−1

���
@=0

and j 9 = 1 if 9 > 1 and 0 otherwise. Operate ℓ−1 on both side
of (5), we obtain

q 9 (G, C) = j 9q 9−1 (G, C) + ℏℓ−1 {
� (G, C)R 9 [q 9−1 (G, C)]

}
, 9 ≥ 1. (6)
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(a) ℏ-curves for different values of U (b) Error plots for different order @-HAM solutions

Fig. 1 (0) 2D plot of ℏ-curves for U = 0.8, 0.9, 1 and G = C = 0.5 for (< (< = 5) solution; (1) 2D plots of absolute error for
G = 0.5, C ∈ [0, 1/2] in (< (< = 4, 5) solutions of )�GBE%� (7).

Equation (6) with the initial guess: q0 (G, C) =
∑<−1
A=0 q

(A ) (G, 0+) CA
A ! can be solved for q 9 , 9 ≥ 1. The acceptable interval

of the controlling parametr ℏ is the line segment approximately parallel to the horizontal axis, in ℏ-curve and so called
ℏ-region. The optimal value of ℏ is the values of ℏ within the ℏ-region for which the computed error is minimum. The
convergence of optimal @-HAM is guaranteed in [4, 5].

2.1 STUDY OF NONLINEAR ZLGBEVJ via q-HAM
Example 1 In the first example, consider initial valued nonlinear ) �GBE%� of the form [17, 18, 19, 21]

DU
C q(G, C) =

m2

mG2 [q(G, C)] +
m

mG

[
q

(
G,
C

2

)]
q

( G
2
,
C

2

)
+ 1

2
q(G, C), q(G, 0) = G, G, C ∈ [0, 1], 0 < U ≤ 1. (7)

Here nonlinear operator:

N[Φ(G, C; @)] = DU
C Φ(G, C; @) −

m2

mG2 [Φ(G, C; @)] −
m

mG

[
Φ

(
G,
C

2
; @

)]
Φ

( G
2
,
C

2
; @

)
− 1

2
Φ(G, C; @)

Zeroth order deformation equation is taken same as in Equation 3. If we take � (G, C) = 1, the auxiliary linear operator:
ℓ[Ψ(G, C; @)] = DU

C [Ψ(G, C; @)], then 9-th order deformation equation for ) �GBE%� (7) is as follows

q 9 (G, C) = j 9q 9−1 (G, C) + ℏJ U
C

[
R 9 [q 9−1 (G, C)]

]
, 9 ≥ 1. (8)

Where
R 9 [q 9−1 (G, C)] = DU

C q ( 9−1) (G, C)−
m2

mG2 q ( 9−1) (G, C) −
∑ 9−1
8=0

m
mG

[
q8

(
G, C2

) ]
q ( 9−1−8)

(
G
2 ,

C
2
)
− 1

2q ( 9−1) (G, C).
On solving the recurrence relation (8) with the initial guess: q0 (G, C) = q(G, 0) = G, we get

q1 (G, C) = −
ℏGCU

Γ(U + 1) ; q2 (G, C) =
√
c2−3U−1 (2U + 2) ℏ2GC2U

Γ(U + 1)Γ
(
U + 1

2

) − ℏG(ℏ + 1)CU
Γ(U + 1) ; . . . (9)

Continuing this process in similar manner, one can get the values of q 9 (G, C) for 9 ≥ 3,fifth order approximate solution
for the nonlinear ) �GBE%� (7), in terms of controlling parameters ℏ is as follows:

(5 (G, C, ℏ) = q0 (G, C) +
5∑
8=1

q8 (G, C). (10)
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Table 1 Comparison of absolute error (�01B) in the solutions (< (< = 4, 5) of )�GBE%� (7) with the error in (4 via HPM[17], and
the relative error ('�) for U = 0.8, 0.9, 1.0 with optimal values of ℏ.

Optimal RE �01B (U = 1)
ℏ→ -1.20055 -1.1396 -1.09836 -1.09736 -1.07419
G C U = 0.8 U = 0.9 U = 1 (4 (5 HPM [17]
0.25 0.25 5.8977E-05 1.1035E-05 2.122401E-06 4.8721E-07 4.6598E-08 2.1230E-06

0.50 2.2944E-05 1.8045E-06 7.094268E-05 1.4370E-06 3.1030E-07 7.0943E-05
0.75 6.4704E-04 2.4478E-04 5.634807E-04 4.7401E-05 2.8905E-06 5.6348E-04
1.00 2.7443E-04 9.3715E-05 2.487124E-03 1.4524E-05 5.7745E-07 2.4871E-03

0.50 0.25 5.8977E-05 1.1035E-05 4.244802E-06 9.7442E-07 9.3195E-08 4.2450E-06
0.50 2.2944E-05 1.8045E-06 1.418854E-04 2.8741E-06 6.2060E-07 1.4189E-04
0.75 6.4704E-04 2.4478E-04 1.126961E-03 9.4803E-05 5.7809E-06 1.1270E-03
1.00 2.7443E-04 9.3715E-05 4.974248E-03 2.9049E-05 1.1549E-06 4.9743E-03

0.75 0.25 5.8977E-05 1.1035E-05 6.369688E-06 1.4616E-06 1.3979E-07 6.3670E-06
0.50 2.2944E-05 1.8045E-06 2.128250E-04 4.3111E-06 9.3089E-07 2.1283E-04
0.75 6.4704E-04 2.4478E-04 1.690020E-03 1.4220E-04 8.6714E-06 1.6905E-03
1.00 2.7443E-04 9.3715E-05 7.461370E-03 4.3573E-05 1.7324E-06 7.4614E-03

(a) ℏ-curves for different values of U (b) Error plots for different order @-HAM solutions

Fig. 2 (0) 2D plot of ℏ-curves for U = 0.8, 0.9, 1 and G = C = 0.5;for fifth order solutions (1) 2D plots of absolute error for
G = 0.5, C ∈ [0, 1/2];in (< (< = 4, 5) solutions of )�GBE%� (11).

When ℏ = −1, U = 1 the solution (10) reduces to (5 (G, C) = G

(
1 + C + C22! +

C3

3! +
C4

4! +
C5

5!

)
, which is similar to the

exact solution q(G, C) = G4C . The same exact series solution is obtained via DTM, HPM, FRDTM, AVIM and HPTM
[12, 17, 18, 19, 21].

Example 2 Consider initial valued nonlinear ) �GBE%� of the following form as described in [17, 18, 19, 21]

DU
C q(G, C) =

m2

mG2

(
q(G, C

2
)
)
q(G, C

2
) − q(G, C), q(G, 0) = G2, G, C ∈ [0, 1], 0 < U ≤ 1. (11)

Analogous to Example 1, the @-HAM yields the following 9-th order deformation equation for Example 2

q 9 (G, C) = j 9q 9−1 (G, C) + ℏJ CU
[
R 9 [q 9−1 (G, C)]

]
, 9 ≥ 1,where (12)

R 9 [q 9−1 (G, C)] = DU
C q ( 9−1) (G, C) −

9−1∑
8=0

m2

mG2

[
q8 (G,

C

2
)
]
q ( 9−1−8) (G,

C

2
) + q ( 9−1) (G, C).

The recurrence relation (12) subject to the initial guess: q0 (G, C) = G2, yields
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Table 2 Comparison of absolute error (�01B) in the solutions (< (< = 4, 5) of )�GBE%� (11) with the error in (4 via HPM[17], and
the relative error ('�) for U = 0.8, 0.9, 1.0 with optimal values of ℏ.

Optimal RE �01B (U = 1)
ℏ→ -1.19407 -1.12687 -1.09836 -1.09736 -1.07419
G C U = 0.8 U = 0.9 U = 1 (4 (5 HPM [17]
0.25 0.25 8.5638E-05 8.2546E-06 1.8044E-06 1.2180E-07 1.1649E-08 5.3000E-07

0.50 7.9700E-04 1.6716E-04 3.0022E-06 3.5926E-07 7.7575E-08 1.7735E-05
0.75 1.5856E-03 4.7832E-04 9.1648E-05 1.1850E-05 7.2261E-07 1.4087E-04
1.00 1.1054E-03 2.7337E-04 3.2725E-05 3.6311E-06 1.4436E-07 6.2178E-04

0.50 0.25 8.5638E-05 8.2546E-06 1.8044E-06 4.8721E-07 4.6598E-08 2.1230E-06
0.50 7.9700E-04 1.6716E-04 3.0022E-06 1.4370E-06 3.1030E-07 7.0943E-05
0.75 1.5856E-03 4.7832E-04 9.1648E-05 4.7401E-05 2.8905E-06 5.6348E-04
1.00 1.1054E-03 2.7337E-04 3.2725E-05 1.4524E-05 5.7745E-07 2.4871E-03

0.75 0.25 8.5638E-05 8.2546E-06 1.8044E-06 1.0962E-06 1.0484E-07 4.7760E-06
0.50 7.9700E-04 1.6716E-04 3.0022E-06 3.2333E-06 6.9817E-07 1.5962E-04
0.75 1.5856E-03 4.7832E-04 9.1648E-05 1.0665E-04 6.5035E-06 1.2678E-03
1.00 1.1054E-03 2.7337E-04 3.2725E-05 3.2680E-05 1.2993E-06 5.5960E-03

(a) 3D plots for different values of U (b) 3D plots for different values of U

Fig. 3 Surface behavior in computational domain G, C ∈ [0, 1] and U = 0.8, 0.9, 1 in (< (< = 5) solution of )�GBE%� (7) and
)�GBE%� (11) respectively.

q1 (G, C) = −
ℏG2CU

Γ(U + 1) ; q2 (G, C) = −
√
c8−U (2U − 4) ℏ2G2C2U

Γ(U + 1)Γ
(
U + 1

2

) − ℏG
2 (ℏ + 1)CU
Γ(U + 1) ; . . . (13)

In similar manner, one can get the values of q 9 (G, C) for 9 ≥ 3. Fifth order approximate solution for the nonlinear
) �GBE%� (11), in terms of controlling parameters ℏ is as follows:

(5 (G, C, ℏ) = q0 (G, C) +
5∑
8=1

q8 (G, C). (14)

Moreover,if ℏ = −1, U = 1 the solution (14) reduces to (5 (G, C) = G2
(
1 + C + C22! +

C3

3! +
C4

4! +
C5

5!

)
. This obtained solution

is similar to the exact solution q(G, C) = G24C ,which is same as computed via DTM, HPM, FRDTM, AVIM and HPTM
[12, 17, 18, 19, 21].
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3 RESULTS AND DISCUSSIONS
For the nonlinear ) �GBE%� (7) and the nonlinear ) �GBE%� (11), the ℏ-curve for different values of U = 0.8, 0.9, 1

for G = C = 0.5; 2D plots of the absolute errors in (< (< = 4, 5) solutions at G = 0.5 for U = 1 are depicted in Figure
1 and Figure 2, respectively.The surface behavior of the (< (< = 5) solution for different values of U = 0.8, 0.9, 1.0
are depicted in Figure 3. Moreover, the relative error

(
RE =

��� (5−(4
(5

���) in the (< (< = 4) solution for different values of
U = 0.8, 0.9, 1.0 and the absolute errors in (< (< = 4, 5) solutions corresponding to optimal value of ℏ are reported in
Table 1 and Table 2, respectively. From these tables, it is seen that the accuracy of (< (< = 4) solution is much better
than the accuracy in HPM [17] results. Moreover, in the literature, it is seen that for given order of approximation, the
HPM results are either equivalent or better than existing results computed via AVIM [18], HPTM [19] and Extended
FRDTM [21] solutions. This concludes that the computed @-HAM results of examples (1),(2) at optimal values of ℏ
are more accurate as compared to the existing results in [18, 19, 21].

4 CONCLUSION
In the present work, @-HAM have been successfully implemented to study the nonlinear time fractional generalized

Burger equation with proportional delay, considering fractional derivative of Caputo type. The computed results are
analyzed in terms of absolute error (and relative error norms in the fourth order approximation) for two test problems
of nonlinear ) �GBE%� . From the findings of previous section, we reach at the conclusion that the evaluated @-HAM
results are much better than the existing results via DTM, HPM, FRDTM, AVIM and HPTM [12, 17, 18, 19, 21], and
these evaluated results approaches towards the exact solution very rapidly in comparison to the results evaluated via
existing techniques.
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