Growth and Distortion Theorems for Some Univalent Harmonic Mappings

Deepali Khurana ${ }^{1}$, Raj Kumar ${ }^{2}$, Sushma Gupta ${ }^{3}$, and Sukhjit Singh ${ }^{3}$
${ }^{1}$ Department of Mathematics, Hans Raj Mahila Maha Vidyalya, Jalandhar-144001, Punjab, India
${ }^{2}$ Department of Mathematics, DAV University, Jalandhar-144001, Punjab, India
${ }^{3}$ Department of Mathematics, Sant Longowal Institute of Engineering and Technology, Longowal-148106, Punjab, India
* Corresponding author's email: ${ }^{1}$ deepali.02.08.88@gmail.com, ${ }^{2}$ rajgarg201@yahoo.co.in doi:https://doi.org/10.21467/proceedings.100.14

Abstract

Let S and K denote the usual classes of normalized univalent analytic and normalized convex analytic functions, respectively. Similarly, let S_{H}^{0} and K_{H}^{0}, respectively, denote these classes in the harmonic case. It is known that the classes $S_{H}^{o}(S)=\left\{h+\bar{g} \in S_{H}^{o}: \quad h+e^{i \theta} g \in S\right.$ for some $\left.\theta \in \mathbb{R}\right\}$ and $K_{H}^{0}(K)=\{h+\bar{g} \in$ $K_{H}^{0}: h+e^{i \theta} g \in K$ for some $\left.\theta \in \mathbb{R}\right\}$ are, respectively, subclasses of normalized univalent harmonic and normalized convex harmonic functions. We give estimates of some functionals defined on the functions of these classes.

1. Introduction and Preliminaries

A continuous complex-valued function $f=u+i v$ defined on a simply connected domain $D \subset \mathbb{C}$ is harmonic if u and v are real valued harmonic functions in D. Let \mathcal{H} denote the class of all those harmonic functions f that are defined in the open unit disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ and are normalized by $f(0)=0=f_{z}(0)-1$. Each $f \in \mathcal{H}$ admits the decomposition $f=h+\bar{g}$, where h and g are analytic in \mathbb{D} with Taylor series expansion of the form

$$
\begin{equation*}
h(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \quad \text { and } \quad g(z)=\sum_{n=1}^{\infty} b_{n} z^{n} . \tag{1.1}
\end{equation*}
$$

The functions h and g are called, respectively, analytic and co-analytic parts of f. Lewy's theorem [9] implies that every harmonic function f on \mathbb{D} is locally univalent and sense-preserving if the Jacobian J_{f} of f, defined by: $J_{f}(z)=\left|h^{\prime}(z)\right|^{2}-\left|g^{\prime}(z)\right|^{2}$, satisfies the condition $J_{f}(z)>0$ on \mathbb{D}, or equivalently, $|w(z)|<1$ in \mathbb{D}, where $w(z)=g^{\prime}(z) / h^{\prime}(z), h^{\prime}(z) \neq 0$ in \mathbb{D}, is called the second dilatation or complex dilatation of f. We denote by S_{H} the subclass of \mathcal{H} consisting of all those functions that are univalent and sense-preserving on \mathbb{D} and by S_{H}^{0}, the family of all $f \in S_{H}$ in which $f_{\bar{z}}(0)=0$. Note that the familiar class S of all normalized analytic and univalent functions defined on \mathbb{D} is contained in S_{H}^{0}. We denote by $K_{H}^{0}, S_{H}^{* 0}$ and C_{H}^{0} the subclasses of S_{H}^{0} whose functions map \mathbb{D} onto, respectively, convex, starlike (with respect to the origin), and close-to-convex domains, just as K, S^{*} and C are the subclasses of S whose members map \mathbb{D} onto these respective domains.
(C) 2020 Copyright held by the author(s). Published by AIJR Publisher in Proceedings of "International

Conference on Applied Mathematics \& Computational Sciences" (ICAMCS-2019) October 17th-19th, 2019.
Organized by DIT University, Dehradun, India. Proceedings DOI: 10.21467/proceedings. 100 .
Series: AIJR Proceedings; ISSN: 2582-3922; ISBN: 978-81-942709-6-6 (eBook)

In 1984, Clunie and Sheil-Small [3] constructed a harmonic function (popularly known as harmonic Koebe function) belonging to the class S_{H}^{0}, given by $K(z)=H(z)+\overline{G(z)}$, where

$$
\begin{equation*}
H(z)=\frac{z-\frac{z^{2}}{2}+\frac{z^{3}}{6}}{(1-z)^{3}} \quad \text { and } \quad G(z)=\frac{\frac{z^{2}}{2}+\frac{z^{3}}{6}}{(1-z)^{3}} . \tag{1.2}
\end{equation*}
$$

and proposed the following conjecture.
Conjecture 1.1. For all $f \in S_{H}^{0}$ having the series representation as in (1.1), we have

$$
\left|a_{n}\right| \leq A_{n}, \quad\left|b_{n}\right| \leq B_{n}, \quad \text { for all } n \geq 2
$$

where, $A_{n}=\frac{(2 n+1)(n+1)}{6}$ and $B_{n}=\frac{(2 n-1)(n-1)}{6}$ are, respectively, the coefficients of $H(z)$ and $G(z)$ defined by (1.2).

Although, this conjecture has been settled for a number of subclasses of S_{H}^{0} (See [3, 14, 15], 7, 11 and 12), but it is still open for the full class S_{H}^{0}. Recently, Ponnusamy and Kaliraj [10] introduced the following classes of univalent harmonic mappings.

$$
S_{H}^{o}(S)=\left\{h+\bar{g} \in S_{H}^{o}: \quad h+e^{i \theta} g \in S \text { for some } \theta \in \mathbb{R}\right\}
$$

and

$$
S_{H}(S)=\left\{f=f_{0}+b_{1} \overline{f_{0}}: \quad f_{0} \in S_{H}^{0}(S) \text { and } b_{1} \in \mathbb{D}\right\}
$$

Obviously, $S_{H}^{0}(S) \subseteq S_{H}^{0}$ and $S_{H}(S) \subset S_{H}$. The family $S_{H}^{0}(S)$ is a compact normal family. They proved that Conjecture 1.1 holds for functions in $S_{H}^{0}(S)$ and hence, in view of [14], for functions convex in one direction. As a consequence of this result they derived growth and covering theorems and sharp bounds on the Jacobian and curvature of $f, f \in S_{H}(S)$. In the same paper i.e [10], Ponnusamy and Kaliraj also proved analogous results for the classes

$$
K_{H}^{0}(K)=\left\{h+\bar{g} \in K_{H}^{0}: h+e^{i \theta} g \in K \text { for some } \theta \in \mathbb{R}\right\},
$$

and

$$
K_{H}(K)=\left\{f=f_{0}+b_{1} \overline{f_{0}}: f_{0} \in K_{H}^{0}(K) \text { and } b_{1} \in \mathbb{D}\right\} .
$$

In the present article, we establish estimates for some functionals involving functions from the class $S_{H}(S), S_{H}^{0}(S), K_{H}(K)$ and $K_{H}^{0}(K)$.

We shall need following definitions and results to prove our main results.
The classical Schwarz-Pick estimate for an analytic function w such that $|w(z)|<1$ on \mathbb{D} is the inequality

$$
\begin{equation*}
\left|w^{\prime}(z)\right| \leq \frac{1-|w(z)|^{2}}{1-|z|^{2}} \quad(|z|<1) . \tag{1.3}
\end{equation*}
$$

Ruscheweyh [13] obtained the best possible estimates on higher order derivatives of bounded analytic functions on the unit disk. Anderson and Rovnyak [1] also derived some similar estimates for different classes of analytic functions using other methods. In particular, they proved that if w is an analytic function and $|w(z)|<1$ in \mathbb{D}, then

$$
\begin{equation*}
\left(1-|z|^{2}\right)^{n-1}\left|\frac{w^{(n)}(z)}{n!}\right| \leq \frac{1-|w(z)|^{2}}{1-|z|^{2}} \quad(n=1,2, \ldots \ldots) \tag{1.4}
\end{equation*}
$$

The case $z=0$ (1.5) leads to the classical result (See [2, 8]): If

$$
\begin{equation*}
w(z)=c_{0}+c_{1} z+c_{2} z^{2}+\cdots \tag{1.5}
\end{equation*}
$$

is analytic and $|w(z)|<1$ in \mathbb{D}, then

$$
\begin{equation*}
\left|c_{n}\right| \leq 1-\left|c_{0}\right|^{2}, \tag{1.6}
\end{equation*}
$$

for every $n \geq 1$.

2. Main Results

Ponnusamy and Kaliraj [10] established following inequalities which we shall need in the present section.

Lemma 2.1. [10] Every function $f \in S_{H}^{0}(S)$ satisfies the inequalities

$$
\frac{1}{6}\left[1-\left(\frac{1-r}{1+r}\right)^{3}\right] \leq|f(z)| \leq \frac{1}{6}\left[\left(\frac{1+r}{1-r}\right)^{3}-1\right], \quad r=|z|<1 .
$$

The above inequalities are sharp and the equality is attained for the harmonic Koebe function K defined by (1.2) and its rotations.

Lemma 2.2. [10] Let $f \in S_{H}(S)$ with $b_{1}=f_{\bar{z}}(0)$. Then for any z with $0<|z|=r<1$ the inequalities

$$
\left|h^{\prime}(z)\right| \leq\left(1+r\left|b_{1}\right|\right) \frac{(1+r)}{(1-r)^{4}} \quad \text { and } \quad\left|g^{\prime}(z)\right| \leq\left(r+\left|b_{1}\right|\right) \frac{(1+r)}{(1-r)^{4}}
$$

hold. These bounds are sharp. The equality is attained for the close-to-convex functions $f(z)=$ $K(z)+\overline{b_{1} K(z)}$, where K is the harmonic Koebe function defined by (1.2).

We now prove the following results.
Theorem 2.3. If $f \in S_{H}^{0}(S), f=h+\bar{g}$ and $|z|=r<1$, then
(i) $|h|-|g| \leq \min \left\{\frac{r}{(1-r)^{2}}, \frac{1}{6}\left[\left(\frac{1+r}{1-r}\right)^{3}-1\right]\right\}$ (ii) $|h|+|g| \geq \max \left\{\frac{r}{(1+r)^{2}}, \frac{1}{6}\left[1-\left(\frac{1-r}{1+r}\right)^{3}\right]\right\}$.

Proof. For $f=h+\bar{g}$, it follows from $f \in S_{H}^{0}(S)$ that there must exist at least one $\theta \in \mathbb{R}$ such that $h+e^{i \theta} g \in S$. Applying growth theorem (see [5]) for the class S on $h+e^{i \theta} g$, we get

$$
\begin{equation*}
\frac{r}{(1+r)^{2}} \leq\left|h+e^{i \theta} g\right| \leq \frac{r}{(1-r)^{2}} \tag{2.1}
\end{equation*}
$$

Also,

$$
\begin{equation*}
|h|-|g| \leq\left|h+e^{i \theta} g\right| \leq|h|+|g| \text {. } \tag{2.2}
\end{equation*}
$$

From Lemma 2.1 and (2.2), we have following

$$
\begin{equation*}
|h|-|g| \leq \frac{1}{6}\left[\left(\frac{1+r}{1-r}\right)^{3}-1\right] \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
|h|+|g| \geq \frac{1}{6}\left[1-\left(\frac{1-r}{1+r}\right)^{3}\right] \tag{2.4}
\end{equation*}
$$

It follows from (2.1) and (2.2) that

$$
\begin{align*}
& |h|-|g| \leq \frac{r}{(1-r)^{2}} \tag{2.5}\\
& |h|+|g| \geq \frac{r}{(1+r)^{2}} . \tag{2.6}
\end{align*}
$$

Now, (2.3) and (2.5) imply

$$
|h|-|g| \leq \min \left\{\frac{r}{(1-r)^{2}}, \frac{1}{6}\left[\left(\frac{1+r}{1-r}\right)^{3}-1\right]\right\} .
$$

Similarly, (2.4) and (2.6) give

$$
|h|+|g| \geq \max \left\{\frac{r}{(1+r)^{2}}, \frac{1}{6}\left[1-\left(\frac{1-r}{1+r}\right)^{3}\right]\right\}
$$

as desired.
Theorem 2.4. For each $f \in S_{H}^{0}(S), f=h+\bar{g}$ and $|z|=r<1$, we have

$$
\begin{align*}
& \left|h^{\prime}\right|-\left|g^{\prime}\right| \leq \frac{1+r}{(1-r)^{3}} \tag{2.7}\\
& \left|h^{\prime}\right|+\left|g^{\prime}\right| \geq \frac{1-r}{(1+r)^{3}} \tag{2.8}
\end{align*}
$$

The proof easily follows from Theorem 2.3 by applying the distortion theorem (see [5]) for the class S instead of growth theorem.

Following results for the class $K_{H}^{0}(K)$ of harmonic convex functions follow similarly.
Theorem 2.5. For $f \in K_{H}^{0}(K), f=h+\bar{g}$ and $|z|=r<1$, we have (i) $|h|-|g| \leq \frac{r}{1-r}$ (ii) $|h|+|g| \geq \frac{r}{1+r}$.

Theorem 2.6. If $f \in K_{H}^{0}(K), f=h+\bar{g}$ and $|z|=r<1$, then (i) $\left|h^{\prime}\right|-\left|g^{\prime}\right| \leq \frac{1}{(1-r)^{2}}$ (ii) $\left|h^{\prime}\right|+\left|g^{\prime}\right| \geq \frac{1}{(1+r)^{2}}$.

Theorem 2.7. For each $f \in S_{H}^{0}(S), f=h+\bar{g}$ and $|z|=r<1$, one has

$$
\begin{equation*}
|g(z)| \geq\left|\frac{1+3 r+5(1-r)^{3}}{(1-r)^{3}}-\frac{r^{2}+r+1}{(1+r)^{2}}\right| \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
|g(z)| \leq \frac{(1-r)\left(5(1-r)^{2}+6 r(1-r)-9\right)+4}{6(1-r)^{3}} . \tag{2.10}
\end{equation*}
$$

Proof. Taking $\left|b_{1}\right|=0$ in Lemma 2.2, we get

$$
\begin{equation*}
\left|h^{\prime}(z)\right| \leq \frac{1+r}{(1-r)^{4}} \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|g^{\prime}(z)\right| \leq \frac{r(1+r)}{(1-r)^{4}} \tag{2.12}
\end{equation*}
$$

The right hand side of (2.10), is obtained immediately by integrating (2.12) along a radial line $\zeta=t e^{i \theta}$. In order to prove right hand side of (2.9), we first note that g is univalent. Let $\tau=$ $g(\{z:|z|=r\})$ and let $\xi \in \tau$ be the nearest point to the origin. By a rotation we may assume that $\xi>0$. Let γ be the line segment $0 \leq \xi \leq \xi_{1}$ and suppose that $z_{1}=g^{-1}\left(\xi_{1}\right)$ and $L=g^{-1}(\gamma)$. With ζ as the variable of integration on L we have $d \xi=g^{\prime}(\zeta) d \zeta>0$ on L. Hence, using (2.8)

$$
\begin{aligned}
\xi_{1} & =\int_{0}^{\xi} d \xi=\int_{0}^{z_{1}} g^{\prime}(\zeta) d \zeta \geq \int_{0}^{z_{1}}\left|g^{\prime}(\zeta)\right||d \zeta| \geq \int_{0}^{r}\left|g^{\prime}\left(t e^{i \theta}\right)\right| d t \\
& \geq \int_{0}^{r}\left|\frac{1-r}{(1+r)^{3}}-\frac{(1+r)}{(1-r)^{4}}\right| d r \\
& =\left|\frac{1+3 r+5(1-r)^{3}}{(1-r)^{3}}-\frac{r^{2}+r+1}{(1+r)^{2}}\right|
\end{aligned}
$$

The following result of Ponnusamy and Kaliraj [10] is required in our next result.
Lemma 2.8. [10] Suppose that $f=h+\bar{g} \in S_{H}(S)$ with the series representation as in (1.1). Then

$$
\left|a_{n}\right|<\frac{1}{3}\left(2 n^{2}+1\right) \quad \text { and } \quad\left|b_{n}\right|<\frac{1}{3}\left(2 n^{2}+1\right) \quad \text { for all } n \geq 2
$$

Theorem 2.9. For $f \in S_{H}, f=h+\bar{g}$ with $\left|b_{1}\right|=\alpha \in(0,1)$ and $|z|=r<1$, we have

$$
\begin{gathered}
\left(\text { i }\left|\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right|\right.
\end{gathered} \frac{2 r^{2}-6 r}{1-r^{2}}-\frac{r\left(1-\alpha^{2}\right)}{|r-\alpha|(1-r \alpha)}, ~=\Re \frac{r^{2}-6 r+1}{1-r^{2}} \leq \Re\left(1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right) \leq \frac{r\left(1-\alpha^{2}\right)}{|r-\alpha|(1-\alpha r)}+\frac{r^{2}+6 r+1}{1-r^{2}} .
$$

Proof. Let $f=h+\bar{g}$ and fix $t \in \mathbb{D}$. We apply the disk automorphism and obtain

$$
F(z)=\frac{f\left(\frac{z+t}{1+\bar{t} z}\right)-f(t)}{\left(1-|t|^{2}\right) h^{\prime}(t)}=H(z)+\overline{G(z)}
$$

which is again in S_{H}. We take

$$
H(z)=z+A_{2}(t) z^{2}+A_{3}(t) z^{3}+\cdots
$$

After a simple calculation we get

$$
A_{2}(t)=\frac{1}{2}\left\{\left(1-|t|^{2}\right) \frac{h^{\prime \prime}(t)}{h^{\prime}(t)}-2 \bar{t}\right\}
$$

Taking $n=2$ in Lemma 2.8, we get $\left|A_{2}(t)\right|<3$. Therefore

$$
\begin{equation*}
\frac{2 r^{2}-6 r}{1-r^{2}} \leq \Re\left(\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right) \leq \frac{2 r^{2}+6 r}{1-r^{2}}, \quad|z|=r<1 . \tag{2.13}
\end{equation*}
$$

Using the relation $g^{\prime}=w h^{\prime}$ we obtain

$$
\begin{equation*}
\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}=\frac{z w^{\prime}(z)}{w(z)}+\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)} \tag{2.14}
\end{equation*}
$$

Thus, w satisfies (See [6, p.118])

$$
\begin{equation*}
\left|\frac{w(z)-w(0)}{1-\overline{w(0)} w(z)}\right| \leq|z| \quad(|z|=r) \tag{2.15}
\end{equation*}
$$

from which it follows that

$$
\begin{equation*}
\left|w(z)-\frac{w(0)\left(1-r^{2}\right)}{1-|w(0)|^{2} r^{2}}\right| \leq \frac{r\left(1-|w(0)|^{2}\right)}{1-|w(0)|^{2} r^{2}} . \tag{2.16}
\end{equation*}
$$

Here note that $|w(0)|=\left|c_{0}\right|=\left|b_{1}\right|=\alpha$, so that, by (2.16), we have

$$
\begin{equation*}
\frac{|r-\alpha|}{1-\alpha r} \leq|w(z)| \leq \frac{r+\alpha}{1+\alpha r} \tag{2.17}
\end{equation*}
$$

Taking into account (2.13), (2.14), (2.17) and the Schwarz-Pick inequality (1.4), we obtain for $|z|=r<1$,

$$
\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}=\frac{z w^{\prime}(z)}{w(z)}+\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}
$$

and so,

$$
\begin{aligned}
& \left|\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right| \geq\left|\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right|-\left|\frac{z w^{\prime}(z)}{w(z)}\right| \\
& \geq \frac{2 r^{2}-6 r}{1-r^{2}}-\frac{r\left(1-|w(z)|^{2}\right)}{|w(z)|\left(1-r^{2}\right)} \\
& \geq \frac{2 r^{2}-6 r}{1-r^{2}}-\frac{r\left(1-r^{2}\right)\left(1-\alpha^{2}\right)}{\left(1-r^{2}\right)|r-\alpha|(1-\alpha r)} \\
& =\frac{2 r^{2}-6 r}{1-r^{2}}-\frac{r\left(1-\alpha^{2}\right)}{|r-\alpha|(1-\alpha r)} .
\end{aligned}
$$

Moreover,

$$
\begin{gathered}
1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}=\frac{z w^{\prime}(z)}{w(z)}+1+\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}, \text { gives } \\
\mathfrak{R}\left(1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right)=\mathfrak{R} \frac{z w^{\prime}(z)}{w(z)}+\mathfrak{R}\left(1+\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right) .
\end{gathered}
$$

By using, (1.4), (2.13) and (2.17), we have

$$
\mathfrak{R}\left(1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right) \geq \frac{r\left(\alpha^{2}-1\right)}{|\alpha-r|(1-\alpha r)}+\frac{r^{2}-6 r+1}{1-r^{2}} .
$$

Similarly, we have

$$
\mathfrak{R}\left(1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right) \leq \frac{r\left(1-\alpha^{2}\right)}{|r-\alpha|(1-\alpha r)}+\frac{r^{2}+6 r+1}{1-r^{2}},
$$

as asserted.

References

[1] J. M. Anderson and J. Rovnyak, On generalized Schwarz-Pick estimates, Mathematika 53 (2006), no. 1, 161-168.
[2] C. Bénéteau, A. Dahlner and D. Khavinson, Remarks on the Bohr phenomenon, Comput. Methods Funct. Theory 4 (2004), no. 1, 1-19.
[3] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 3-25.
[4] P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer, New York, 1983.
[5] P. Duren, Harmonic mappings in the plane, Cambridge Tracts in Mathematics, 156, Cambridge Univ. Press, Cambridge, 2004.
[6] G. M. Goluzin, Geometric theory of functions of a complex variable, Translations of Mathematical Monographs, Vol. 26, Amer. Math. Soc., Providence, RI, 1969.
[7] S. Kanas, S. Maharana and J.K. Prajapat, Norm of the pre-Schwarzian derivative, Bloch's constant and coefficient bounds in some classes of harmonic mappings, Journal of Mathematical Analysis and Applications 474 (2019), 931-943.
[8] E. Landau and D. Gaier, Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie, third edition, Springer, Berlin, 1986.
[9] H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42 (1936), no. 10, 689-692.
[10] S. Ponnusamy and A. S. Kaliraj, On the coefficient conjecture of Clunie and Sheil-Small on univalent harmonic mappings, Proc. Indian Acad. Sci. Math. Sci. 125 (2015), no. 3, 277-290.
[11] S. Ponnusamy, J.K. Prajapat and A. S Kaliraj, Uniformly starlike and uniformly convex harmonic mappings, The Journal of Analysis 23 (2015), 121-129.
[12] J.K. Prajapat, M. Manivannan and S. Maharana, Harmonic mappings with analytic part convex in one direction, The Journal of Analysis, DOI:https://doi.org/10.1007/s41478-020-00226-0.
[13] St. Ruscheweyh, Two remarks on bounded analytic functions, Serdica 11 (1985), no. 2, 200-202.
[14] T. Sheil-Small, Constants for planar harmonic mappings, J. London Math. Soc. (2) 42 (1990), no. 2, 237-248.
[15] X.-T. Wang, X.-Q. Liang and Y.-L. Zhang, Precise coefficient estimates for close-to-convex harmonic univalent mappings, J. Math. Anal. Appl. 263 (2001), no. 2, 501-509.

