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ABSTRACT

Let S and K denote the usual classes of normalized univalent analytic and nor-
malized convex analytic functions, respectively. Similarly, let S% and K?{, re-
spectively, denote these classes in the harmonic case. It is known that the classes
S%(S) ={h+g€ Sy : h+ef cSforsomed c R} and K (K) ={h+7ec
K% . h+ePg e K for some 0 € R} are, respectively, subclasses of normalized
univalent harmonic and normalized convex harmonic functions. We give estimates

of some functionals defined on the functions of these classes.

1. Introduction and Preliminaries

A continuous complex-valued function f = w + iv defined on a simply connected domain D C C
is harmonic if v and v are real valued harmonic functions in D. Let H denote the class of all
those harmonic functions f that are defined in the open unit disk D = {z € C : |z] < 1} and are
normalized by f(0) =0 = f,(0) — 1. Each f € H admits the decomposition f = h+ g, where h and

g are analytic in D with Taylor series expansion of the form
[e.e] oo
h(z) = z+Zan2" and g¢(z) = anz”. (1.1)
n=2 n=1

The functions h and g are called, respectively, analytic and co-analytic parts of f. Lewy’s theorem
[9] implies that every harmonic function f on D is locally univalent and sense-preserving if the
Jacobian Jy of f, defined by: J¢(z) = |W'(2)]* — |¢'(2)|?, satisfies the condition J¢(z) > 0 on D,
or equivalently, |w(z)| < 1 in D, where w(z) = ¢'(2)/h/(2), ' (z) # 0 in D, is called the second
dilatation or complex dilatation of f. We denote by S the subclass of ‘H consisting of all those
functions that are univalent and sense-preserving on D and by SY, the family of all f € Sy in which
fz(0) = 0. Note that the familiar class S of all normalized analytic and univalent functions defined
on D is contained in S?{. We denote by K, S;EP and C’% the subclasses of S?{ whose functions map
D onto, respectively, convex, starlike (with respect to the origin), and close-to-convex domains, just

as K, §* and C are the subclasses of S whose members map D onto these respective domains.
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In 1984, Clunie and Sheil-Small [3] constructed a harmonic function (popularly known as har-

monic Koebe function) belonging to the class S%, given by K(z) = H(z) + G(z), where

L2 42 242
H -2 2 6 d G(z)= 26 1.2
() ="t md Gl = (12)
and proposed the following conjecture.
Conjecture 1.1. For all f € S% having the series representation as in (1.1), we have
lan| < An, |bn] < By, foralln>2
where, A, = w and By, = % are, respectively, the coefficients of H(z) and G(z)

defined by (1.2).

Although, this conjecture has been settled for a number of subclasses of S% (See [3, 14, 15], 7, 11
and 12), but it is still open for the full class S%. Recently, Ponnusamy and Kaliraj [10] introduced

the following classes of univalent harmonic mappings.
5S¢ (S)={h+75€S8%: h+egeSforsomehecR}

and

Sg(S)={f=fo+bifo: focSY(S)andb; cD}.
Obviously, S%(S) € S% and Sy (S) C Sy. The family S%(S) is a compact normal family. They
proved that Conjecture 1.1 holds for functions in S%(S) and hence, in view of [14], for functions
convex in one direction. As a consequence of this result they derived growth and covering theorems
and sharp bounds on the Jacobian and curvature of f, f € Sy(S). In the same paper i.e [10],

Ponnusamy and Kaliraj also proved analogous results for the classes
KY(K)={h+ge K% : h+e?gec K for some 0 c R},

and
Ky(K)={f=fo+bifo: foe Ki(K) and b € D}.
In the present article, we establish estimates for some functionals involving functions from the
class Sg(S) , S%(S), Kg(K) and K% (K).
We shall need following definitions and results to prove our main results.
The classical Schwarz-Pick estimate for an analytic function w such that |w(z)| < 1 on D is the
inequality
1 - Jw(z)[?
1— 1z

Ruscheweyh [13] obtained the best possible estimates on higher order derivatives of bounded

w'(2)] < (2] <1). (1.3)

analytic functions on the unit disk. Anderson and Rovnyak [1] also derived some similar estimates
for different classes of analytic functions using other methods. In particular, they proved that if w

is an analytic function and |w(z)| < 1 in D, then
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1—[w(z)]”
nl |7 1—|z?

The case z = 0 (1.5) leads to the classical result (See [2, 8]): If

(1 _ |Z’2)n—1 w(n)(z)

w(z) =co+c1z+ca2® + - - (1.5)

is analytic and |w(z)| < 1 in D, then
len] <1 —eol?, (1.6)

for every n > 1.
2. Main Results

Ponnusamy and Kaliraj [10] established following inequalities which we shall need in the present

section.

Lemma 2.1. [10] Every function f € S%(S) satisfies the inequalities

1—7\3 1 3
1 ! Ll R D T
1+7r 1—r

The above inequalities are sharp and the equality is attained for the harmonic Koebe function K
defined by (1.2) and its rotations.

1

6

1
<[f(2)] < 5

Lemma 2.2. [10] Let f € Sy (S) with by = fz(0). Then for any z with 0 < |z| = r < 1 the
inequalities

(1+7) (1+7)

(1—mr) (1—r)t

hold. These bounds are sharp. The equality is attained for the close-to-convex functions f(z) =

K(z)+ b1 K(z), where K is the harmonic Koebe function defined by (1.2).

P (2)] < (1 + rfba]) and  [g'(2)] < (r + [ba])

We now prove the following results.

Theorem 2.3. If f € S%(S), f=h+7 and |2| =1 < 1, then
i) |k < mi r 1 147 3 1 i) |k > r 111 1—r 3
(Z) | | o |g| = min (1-r)2°6 i—r) = (27’) ‘ ‘ =+ ‘g‘ Z max a+n2’ 6 —\ie .
Proof. For f = h+ g, it follows from f € S%(S) that there must exist at least one 6 € R such that

h+eg € S. Applying growth theorem (see [5]) for the class S on h + eg, we get
r

, T
———— < |h+ e < 2.1
e == sy >y
Also,
Al = 19| < |h+ 9] < || + g]. (2.2)
From Lemma 2.1 and (2.2), we have following
1 1+7\?
h| — < - —1 2.3
-l < g | (150) ] (2.3
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and s
1 1—7r
>—|1- 2.4
e+l g - (1) (2.0
It follows from (2.1) and (2.2) that
”
Al =gl < (EE (2.5)
r
Al + lg] = EaER (2.6)
Now, (2.3) and (2.5) imply
T 1 1+7\°
—lgl <mind —— = _1
ol | —mm{u_rm (59 ]}
Similarly, (2.4) and (2.6) give
r 1 1-r\*
> Z 11 =
|h| + |g] _max{(1+r)2,6 [1 (1+r> }
as desired. g
Theorem 2.4. For each f € S%(S), f =h+7g and |z| =r < 1, we have
147
| =g’ < a e (2.7)
—r
W]+ 9’| > ESE (2.8)

The proof easily follows from Theorem 2.3 by applying the distortion theorem (see [5]) for the
class S instead of growth theorem.

Following results for the class K% (K) of harmonic convex functions follow similarly.

Theorem 2.5. For f € KY(K), f =h+7 and |z| =7 < 1, we have (i) |h| — |g| < =
(i) 1] + lg| > 12

Theorem 2.6. If f € K% (K), f=h+7 and |z| =7 < 1, then (i) |[W| —|¢'| < ﬁ
(i) W]+ 191 > k.

Theorem 2.7. For each f € S%(S), f =h+7g and |z| =r < 1, one has

1+3r+5(1—r)3 r2+r+1

l9(2)] = =)y (e (2.9)
and
—7r —r)24+6r(l—1)—
l9(2)] < (1-n(a 6)(1+_€;)§1 )=9)+4 (2.10)
Proof. Taking |b;| = 0 in Lemma 2.2, we get
1'(2)] < (11:7)4 (2.11)
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and (1 )

, r(l+r
<

) <

The right hand side of (2.10), is obtained immediately by integrating (2.12) along a radial line

¢ = te’?. In order to prove right hand side of (2.9), we first note that g is univalent. Let 7 =

(2.12)

g({z:]z] =r}) and let £ € T be the nearest point to the origin. By a rotation we may assume that
€ > 0. Let 7 be the line segment 0 < ¢ < & and suppose that 23 = g~1(&) and L = g~ (7). With
¢ as the variable of integration on L we have d§ = ¢/(¢)d{ > 0 on L. Hence, using (2.8)

§ zZ1 Z1 T
_ _ / / / 0
51—/0 df—/o g<<>d<z/0 |g<<>|d<|z/0 g/ (1) dt
T 1—r (I+7)
ZA

— dr
_‘14—37‘—!—5(1—7‘)3 r24+r+1

1+r3  (1-n)f

(1—7r)3 (1+7r)?

The following result of Ponnusamy and Kaliraj [10] is required in our next result.

Lemma 2.8. [10] Suppose that f = h+7 € Sg(S) with the series representation as in (1.1). Then
1 1
lan| < §(2n2 +1) and |by] < §(2n2 +1) for all n>2.

Theorem 2.9. For f € Sy, f = h+g with |bi] = a € (0,1) and |z| =7 < 1, we have

(i) 2" (2) S 2r2 — 6r (- a?)
gz |~ 1-r2  |r—a|(l-ra)’
. r(a®=1) r? —6r +1 29" (2) r(1 —a?) r2 4+ 6r +1
< 1 <
(”)|a—r|(1—o¢7‘) 1—12 9%( + Jdz) )~ |jr—a/—ar) 1—1r2

Proof. Let f = h+ g and fix t € D. We apply the disk automorphism and obtain

FEL) - F@)
F(z) = éHﬁ%W@ = H(2) + G(2),

which is again in Sy. We take
H(z) = 24 Ag(t)2? + As3(t)2> + - - -,

After a simple calculation we get

1 R'(t) -
Ag(t) = ={(1 — |t]? — 2t
o(8) = 50— )3 — 2
Taking n = 2 in Lemma 2.8, we get |A2(t)| < 3. Therefore
2r2 — 6r zh"(2) 2r2 4 6r
— < < = 1. 2.1
1— 72 _g{<h’(z)>— 1—r2° |2l =7 < (2.13)

Using the relation ¢’ = wh’ we obtain
29" (z)  zw'(z) | zh"(2)
gz wlz)  W(z)
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Thus, w satisfies (See [6, p.118])

w(z) —w(0
G wO® o gz =n), (2.15)
1 —w(0)w(z)
from which it follows that
w(0)(1—7%) | _ r(1—|w(0)])
— < . 2.16
)~ | < T (216)
Here note that |w(0)| = |co| = |b1| = «, so that, by (2.16), we have
Ir — «f r+
< < . 2.17
1—047"_‘11}(2)‘_1—1-047" ( )

Taking into account (2.13), (2.14), (2.17) and the Schwarz-Pick inequality (1.4), we obtain for

|z| =7 <1,
29"(z)  zw'(z)  zh"(2)

gz wz)  W(z)

and so,
zq"(2) zh"(2)|  |2w'(2)
g(z) | — | W(z) w(z)
2r2 — 6r B r(1 — |w(2)|?)
1—r2 lw(2)](1 —r2)
2r2 — 6r B r(1—7r3)(1 - a?)
1—1r2 (1=r?)r—a|(l —ar)
B 2r2 — 6r B r(1 —a?)
1—r2 Ir—a|(1—ar)
Moreover,
z2g"(z)  2u'(2) W' (z) .
1 = 1
T T w W
29" (2) 2w’ (2) zh"(2)
1
n (150 wz) TG
By using, (1.4), (2.13) and (2.17), we have
" 2 2 _
w142 (2) r(a® —1) re—6r+1
J'(z) la —r|(1 — ar) 1—12
Similarly, we have
" 2 2
w14 2 (2) r(l—a?) r+67“+1’
J'(2) Ir — al(1 — ar) 1— 72
as asserted. O
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