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ABSTRACT

Let S and K denote the usual classes of normalized univalent analytic and nor-

malized convex analytic functions, respectively. Similarly, let S0
H and K0

H , re-

spectively, denote these classes in the harmonic case. It is known that the classes

SoH(S) = {h + g ∈ SoH : h + eiθg ∈ S for some θ ∈ R} and K0
H(K) = {h + g ∈

K0
H : h + eiθg ∈ K for some θ ∈ R} are, respectively, subclasses of normalized

univalent harmonic and normalized convex harmonic functions. We give estimates

of some functionals defined on the functions of these classes.

1. Introduction and Preliminaries

A continuous complex-valued function f = u + iv defined on a simply connected domain D ⊂ C
is harmonic if u and v are real valued harmonic functions in D. Let H denote the class of all

those harmonic functions f that are defined in the open unit disk D = {z ∈ C : |z| < 1} and are

normalized by f(0) = 0 = fz(0)− 1. Each f ∈ H admits the decomposition f = h+ g, where h and

g are analytic in D with Taylor series expansion of the form

h(z) = z +

∞∑
n=2

anz
n and g(z) =

∞∑
n=1

bnz
n. (1.1)

The functions h and g are called, respectively, analytic and co-analytic parts of f . Lewy’s theorem

[9] implies that every harmonic function f on D is locally univalent and sense-preserving if the

Jacobian Jf of f , defined by: Jf (z) = |h′(z)|2 − |g′(z)|2, satisfies the condition Jf (z) > 0 on D,

or equivalently, |w(z)| < 1 in D, where w(z) = g′(z)/h′(z), h′(z) 6= 0 in D, is called the second

dilatation or complex dilatation of f . We denote by SH the subclass of H consisting of all those

functions that are univalent and sense-preserving on D and by S0
H , the family of all f ∈ SH in which

fz(0) = 0. Note that the familiar class S of all normalized analytic and univalent functions defined

on D is contained in S0
H . We denote by K0

H , S∗0H and C0
H the subclasses of S0

H whose functions map

D onto, respectively, convex, starlike (with respect to the origin), and close-to-convex domains, just

as K, S∗ and C are the subclasses of S whose members map D onto these respective domains.
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In 1984, Clunie and Sheil-Small [3] constructed a harmonic function (popularly known as har-

monic Koebe function) belonging to the class S0
H , given by K(z) = H(z) +G(z), where

H(z) =
z − z2

2 + z3

6

(1− z)3
and G(z) =

z2

2 + z3

6

(1− z)3
. (1.2)

and proposed the following conjecture.

Conjecture 1.1. For all f ∈ S0
H having the series representation as in (1.1), we have

|an| ≤ An, |bn| ≤ Bn, for all n ≥ 2

where, An = (2n+1)(n+1)
6 and Bn = (2n−1)(n−1)

6 are, respectively, the coefficients of H(z) and G(z)

defined by (1.2).

Although, this conjecture has been settled for a number of subclasses of S0
H (See [3, 14, 15], 7, 11

and 12), but it is still open for the full class S0
H . Recently, Ponnusamy and Kaliraj [10] introduced

the following classes of univalent harmonic mappings.

SoH(S) = {h+ g ∈ SoH : h+ eiθg ∈ S for some θ ∈ R}

and

SH(S) = {f = f0 + b1f0 : f0 ∈ S0
H(S) and b1 ∈ D}.

Obviously, S0
H(S) ⊆ S0

H and SH(S) ⊂ SH . The family S0
H(S) is a compact normal family. They

proved that Conjecture 1.1 holds for functions in S0
H(S) and hence, in view of [14], for functions

convex in one direction. As a consequence of this result they derived growth and covering theorems

and sharp bounds on the Jacobian and curvature of f , f ∈ SH(S). In the same paper i.e [10],

Ponnusamy and Kaliraj also proved analogous results for the classes

K0
H(K) = {h+ g ∈ K0

H : h+ eiθg ∈ K for some θ ∈ R},

and

KH(K) = {f = f0 + b1f0 : f0 ∈ K0
H(K) and b1 ∈ D}.

In the present article, we establish estimates for some functionals involving functions from the

class SH(S) , S0
H(S), KH(K) and K0

H(K).

We shall need following definitions and results to prove our main results.

The classical Schwarz-Pick estimate for an analytic function w such that |w(z)| < 1 on D is the

inequality

|w′(z)| ≤ 1− |w(z)|2

1− |z|2
(|z| < 1). (1.3)

Ruscheweyh [13] obtained the best possible estimates on higher order derivatives of bounded

analytic functions on the unit disk. Anderson and Rovnyak [1] also derived some similar estimates

for different classes of analytic functions using other methods. In particular, they proved that if w

is an analytic function and |w(z)| < 1 in D, then
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(1− |z|2)n−1
∣∣∣∣∣w(n)(z)

n!

∣∣∣∣∣ ≤ 1− |w(z)|2

1− |z|2
(n = 1, 2, ......) (1.4)

The case z = 0 (1.5) leads to the classical result (See [2, 8]): If

w(z) = c0 + c1z + c2z
2 + · · · (1.5)

is analytic and |w(z)| < 1 in D, then

|cn| ≤ 1− |c0|2, (1.6)

for every n ≥ 1.

2. Main Results

Ponnusamy and Kaliraj [10] established following inequalities which we shall need in the present

section.

Lemma 2.1. [10] Every function f ∈ S0
H(S) satisfies the inequalities

1

6

[
1−

(
1− r
1 + r

)3
]
≤ |f(z)| ≤ 1

6

[(
1 + r

1− r

)3

− 1

]
, r = |z| < 1.

The above inequalities are sharp and the equality is attained for the harmonic Koebe function K

defined by (1.2) and its rotations.

Lemma 2.2. [10] Let f ∈ SH(S) with b1 = fz(0). Then for any z with 0 < |z| = r < 1 the

inequalities

|h′(z)| ≤ (1 + r|b1|)
(1 + r)

(1− r)4
and |g′(z)| ≤ (r + |b1|)

(1 + r)

(1− r)4
hold. These bounds are sharp. The equality is attained for the close-to-convex functions f(z) =

K(z) + b1K(z), where K is the harmonic Koebe function defined by (1.2).

We now prove the following results.

Theorem 2.3. If f ∈ S0
H(S), f = h+ g and |z| = r < 1, then

(i) |h| − |g| ≤ min

{
r

(1−r)2 ,
1
6

[(
1+r
1−r

)3
− 1

]}
(ii) |h|+ |g| ≥ max

{
r

(1+r)2
, 16

[
1−

(
1−r
1+r

)3]}
.

Proof. For f = h+ g, it follows from f ∈ S0
H(S) that there must exist at least one θ ∈ R such that

h+ eiθg ∈ S. Applying growth theorem (see [5]) for the class S on h+ eiθg, we get

r

(1 + r)2
≤ |h+ eiθg| ≤ r

(1− r)2
(2.1)

Also,

|h| − |g| ≤ |h+ eiθg| ≤ |h|+ |g|. (2.2)

From Lemma 2.1 and (2.2), we have following

|h| − |g| ≤ 1

6

[(
1 + r

1− r

)3

− 1

]
(2.3)
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and

|h|+ |g| ≥ 1

6

[
1−

(
1− r
1 + r

)3
]
. (2.4)

It follows from (2.1) and (2.2) that

|h| − |g| ≤ r

(1− r)2
(2.5)

|h|+ |g| ≥ r

(1 + r)2
. (2.6)

Now, (2.3) and (2.5) imply

|h| − |g| ≤ min

{
r

(1− r)2
,
1

6

[(
1 + r

1− r

)3

− 1

]}
.

Similarly, (2.4) and (2.6) give

|h|+ |g| ≥ max

{
r

(1 + r)2
,
1

6

[
1−

(
1− r
1 + r

)3
]}

as desired. �

Theorem 2.4. For each f ∈ S0
H(S), f = h+ g and |z| = r < 1, we have

|h′| − |g′| ≤ 1 + r

(1− r)3
(2.7)

|h′|+ |g′| ≥ 1− r
(1 + r)3

(2.8)

*

The proof easily follows from Theorem 2.3 by applying the distortion theorem (see [5]) for the

class S instead of growth theorem.

Following results for the class K0
H(K) of harmonic convex functions follow similarly.

Theorem 2.5. For f ∈ K0
H(K), f = h+ g and |z| = r < 1, we have (i) |h| − |g| ≤ r

1−r
(ii) |h|+ |g| ≥ r

1+r .

Theorem 2.6. If f ∈ K0
H(K), f = h+ g and |z| = r < 1, then (i) |h′| − |g′| ≤ 1

(1−r)2

(ii) |h′|+ |g′| ≥ 1
(1+r)2

.

Theorem 2.7. For each f ∈ S0
H(S), f = h+ g and |z| = r < 1, one has

|g(z)| ≥
∣∣∣∣1 + 3r + 5(1− r)3

(1− r)3
− r2 + r + 1

(1 + r)2

∣∣∣∣ (2.9)

and

|g(z)| ≤
(1− r)

(
5(1− r)2 + 6r(1− r)− 9

)
+ 4

6(1− r)3
. (2.10)

Proof. Taking |b1| = 0 in Lemma 2.2, we get

|h′(z)| ≤ 1 + r

(1− r)4
(2.11)
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and

|g′(z)| ≤ r(1 + r)

(1− r)4
(2.12)

The right hand side of (2.10), is obtained immediately by integrating (2.12) along a radial line

ζ = teiθ. In order to prove right hand side of (2.9), we first note that g is univalent. Let τ =

g ({z : |z| = r}) and let ξ ∈ τ be the nearest point to the origin. By a rotation we may assume that

ξ > 0. Let γ be the line segment 0 ≤ ξ ≤ ξ1 and suppose that z1 = g−1(ξ1) and L = g−1(γ). With

ζ as the variable of integration on L we have dξ = g′(ζ)dζ > 0 on L. Hence, using (2.8)

ξ1 =

∫ ξ

0
dξ =

∫ z1

0
g′(ζ)dζ ≥

∫ z1

0
|g′(ζ)||dζ| ≥

∫ r

0
|g′(teiθ)|dt

≥
∫ r

0

∣∣∣∣ 1− r
(1 + r)3

− (1 + r)

(1− r)4

∣∣∣∣ dr
=

∣∣∣∣1 + 3r + 5(1− r)3

(1− r)3
− r2 + r + 1

(1 + r)2

∣∣∣∣ . �

The following result of Ponnusamy and Kaliraj [10] is required in our next result.

Lemma 2.8. [10] Suppose that f = h+ g ∈ SH(S) with the series representation as in (1.1). Then

|an| <
1

3
(2n2 + 1) and |bn| <

1

3
(2n2 + 1) for all n ≥ 2.

Theorem 2.9. For f ∈ SH , f = h+ g with |b1| = α ∈ (0, 1) and |z| = r < 1, we have

(i)

∣∣∣∣zg′′(z)g′(z)

∣∣∣∣ ≥ 2r2 − 6r

1− r2
− r(1− α2)

|r − α|(1− rα)
,

(ii)
r(α2 − 1)

|α− r|(1− αr)
+
r2 − 6r + 1

1− r2
≤ R

(
1 +

zg′′(z)

g′(z)

)
≤ r(1− α2)

|r − α|(1− αr)
+
r2 + 6r + 1

1− r2
.

Proof. Let f = h+ g and fix t ∈ D. We apply the disk automorphism and obtain

F (z) =
f
(
z+t
1+tz

)
− f(t)

(1− |t|2)h′(t)
= H(z) +G(z),

which is again in SH . We take

H(z) = z +A2(t)z
2 +A3(t)z

3 + · · ·,

After a simple calculation we get

A2(t) =
1

2
{(1− |t|2)h

′′(t)

h′(t)
− 2t},

Taking n = 2 in Lemma 2.8, we get |A2(t)| < 3. Therefore

2r2 − 6r

1− r2
≤ R

(
zh′′(z)

h′(z)

)
≤ 2r2 + 6r

1− r2
, |z| = r < 1. (2.13)

Using the relation g′ = wh′ we obtain

zg′′(z)

g′(z)
=
zw′(z)

w(z)
+
zh′′(z)

h′(z)
. (2.14)
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Thus, w satisfies (See [6, p.118]) ∣∣∣∣∣ w(z)− w(0)

1− w(0)w(z)

∣∣∣∣∣ ≤ |z| (|z| = r), (2.15)

from which it follows that ∣∣∣∣w(z)− w(0)(1− r2)
1− |w(0)|2r2

∣∣∣∣ ≤ r(1− |w(0)|2)
1− |w(0)|2r2

. (2.16)

Here note that |w(0)| = |c0| = |b1| = α, so that, by (2.16), we have

|r − α|
1− αr

≤ |w(z)| ≤ r + α

1 + αr
. (2.17)

Taking into account (2.13), (2.14), (2.17) and the Schwarz-Pick inequality (1.4), we obtain for

|z| = r < 1,
zg′′(z)

g′(z)
=
zw′(z)

w(z)
+
zh′′(z)

h′(z)

and so, ∣∣∣∣zg′′(z)g′(z)

∣∣∣∣ ≥ ∣∣∣∣zh′′(z)h′(z)

∣∣∣∣− ∣∣∣∣zw′(z)w(z)

∣∣∣∣
≥ 2r2 − 6r

1− r2
− r(1− |w(z)|2)
|w(z)|(1− r2)

≥ 2r2 − 6r

1− r2
− r(1− r2)(1− α2)

(1− r2)|r − α|(1− αr)

=
2r2 − 6r

1− r2
− r(1− α2)

|r − α|(1− αr)
.

Moreover,

1 +
zg′′(z)

g′(z)
=
zw′(z)

w(z)
+ 1 +

zh′′(z)

h′(z)
, gives

R

(
1 +

zg′′(z)

g′(z)

)
= R

zw′(z)

w(z)
+ R

(
1 +

zh′′(z)

h′(z)

)
.

By using, (1.4), (2.13) and (2.17), we have

R

(
1 +

zg′′(z)

g′(z)

)
≥ r(α2 − 1)

|α− r|(1− αr)
+
r2 − 6r + 1

1− r2
.

Similarly, we have

R

(
1 +

zg′′(z)

g′(z)

)
≤ r(1− α2)

|r − α|(1− αr)
+
r2 + 6r + 1

1− r2
,

as asserted. �
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