
 

© 2020 Copyright held by the author(s). Published by AIJR Publisher in Proceedings of “International Conference on Applied Mathematics & Com-

putational Sciences” (ICAMCS-2019) October 17th–19th, 2019. Organized by DIT University, Dehradun, India.  

Proceedings DOI: 10.21467/proceedings.100; Series: AIJR Proceedings; ISSN: 2582-3922; ISBN: 978-81-942709-6-6 (eBook) 

ON WEIGHTED ORTHOGONAL BASIS FUNCTION IN MLS WITH 

MESHLESS LOCAL PETROV GALERKIN METHOD 

Rituraj Singh* and Roman Trobec 

“Jožef Stefan” Institute, Parallel and Distributed Systems Laboratory, Jamova cesta 39, 1000 Ljubljana, Slovenia. 

* Corresponding author’s email: Rituraj.Singh@ijs.si 

doi: https://doi.org/10.21467/proceedings.100.11 

ABSTRACT 

The moving least square scheme is among the most successful schemes to generate meshfree 

shape functions in meshfree methods. It is computationally expensive due to computation of the 

inverse of the moment matrix. Recently, a weighted orthogonal basis function based moving least 

square approximation has been used in few meshfree methods such as element free Galerkin 

method, boundary element free method and global boundary node method. The moment matrix 

becomes diagonal matrix due to the orthogonal basis functions, and thus, the moment matrix be-

comes diagonal with trivial inverse. In the current work, weighted orthogonal basis functions 

based moving least square approximation is used in meshless local Petrov Galerkin method. We 

have tested this new method with the meshless local Petrov Galerkin method for one- and two-

dimensional Poisson equation. The numerical experiments have confirmed that the new approach 

provides the same accuracy and convergence rate but with higher computational efficiency than 

the classical moving least square with meshless local Petrov Galerkin method.  

1. Introduction  

In most of the meshfree methods, moving least square (MLS) scheme is used to generate meshfree shape 

functions. The MLS scheme has some drawbacks, i.e. devoid of the Kronecker delta property, instability at 

higher grid resolution, and computational complexity due to inversion of the moment matrix. Devoid of 

Kronecker delta property makes it difficult to impose essential boundary conditions (EBCs), and, methods 

such as penalty approach or Lagrange multiplier are required to impose EBCs. This makes the method more 

complicated and time consuming. To resolve this problem, recently, interpolating moving least square 

method and improved interpolating moving least square schemes have been proposed. These variants of 

the MLS have Kronecker delta property and EBCs can be easily applied on boundaries. In the interpolating 

MLS, a singular weight function is used, and new basis functions, based on MLS basis functions, are de-

veloped [1]. The use of a singular weight function in the interpolating MLS put some limitations. To over-

come this problem improved interpolating MLS scheme was proposed [2]. Both versions of the MLS have 

been used in some meshfree methods such as EFG, boundary element free method (BEFM), and global 

boundary node method (GBNM) [2]–[5].  

The MLS scheme becomes unstable at higher grid resolutions because the moment matrix becomes ill-

conditioned. This problem was solved by using shifted and scaled polynomials basis functions in the MLS 

and its variants. Li and his co-workers [3], [6] have studied the variation of condition number with respect 

to grid size in both MLS and interpolating MLS in GBNM. The condition number of the moment matrix 

becomes independent of the grid size.  
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Another variant of MLS is based on weighted orthogonal basis functions. In this paper, we give an acro-

nym of this new MLS as OMLS. In this scheme, weighted orthogonal basis functions are generated based 

on MLS basis functions. The moment matrix in the OMLS becomes a diagonal matrix, and thus, inversion 

of the moment matrix can be neglected. This saves significantly the CPU time. However, this scheme does 

not possess Kronecker delta property. Liew et al. proposed BEFM based on OMLS for two-dimension 

elasto-dynamics and elasticity problems [7], [8]. Zhang et al. applied OMLS in the EFG method for differ-

ent problems such as elasto-dynamics, wave equation, potential problem, and heat conduction problems 

[9]–[15]. Wang and Sun presented OMLS for regularized long wave equation [16]. Li et al. presented an 

error analysis of OMLS [17] and they implemented OMLS in the GBNM [18]. Wang et al. used OMLS in 

the lattice Boltzmann method in place of the MLS scheme for fluid-solid interaction problem [19].  Cheng 

et al. solved space fractional wave equations by using OMLS [20].     

In the current work, weighted orthogonal basis function based moving least square approximation 

(OMLS) is used in meshless local Petrov Galerkin method (OMLPG). We have tested OMLS for surface 

and curve fittings, then, the OMLPG method has been used to solve Poisson equation in one- and two-

dimensions. We briefly describe the derivation of MLS and OMLS in the next section followed by MLPG 

formulation and numerical results.            

2. Approximation Schemes 

In this section we first give a mathematical derivation of the moving least square (MLS) scheme, then, a 

method for generation of OMLS basis functions is presented.  

2.1 Moving Least Square Scheme (MLS)     

Let x be an evaluation point at which the shape functions and derivatives are to be computed. MLS approx-

imation can be written as  

 T
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where pT(x) is a row vector containing m number of basis functions. For example, in 2-D space, the 

quadratic basis is given as  
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where m=6 is a number of basis functions. The coefficient vector a(x) is determined by minimizing a 
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where w(x,xi) is a weight function, ns is the number of nodes in the support domain, and u(xi) is the nodal 

parameter of the field variable at node xi. Above equation can be written in the matrix form 

 ( ) ( )=A x a(x) B x u  (4) 

where 

 T

1

( , )
ns

i i i

i

w
=

=A(x) x x p(x )p (x )  (5) 
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The MLS approximation is re-written as 
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where and Φ is the meshless shape function given by  
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In the current work, we have chosen quartic weight function  
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rw is the radius of the weighted domain in which weight function is non-zero. 

2.2 MLS based on Orthogonal Basis Functions (OMLS) 

Definition of new basis function is given below which are orthogonal 
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where ( )ip x is the new orthogonal basis function of the OMLS scheme, ( )ip x  is basis function of MLS. 

Let f and g be functions of x. The inner product (f ∙ g) is defined as  
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New weighted orthogonal basis function can be obtained as 

 1( ) 1p =x   

 2 1

2 1 1 1 1
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Similarly, other weighted orthogonal basis functions for OMLS can be obtained. The remaining proce-

dure is the same as of MLS, thus, we are not repeating it here. 

The moment matrix A is a diagonal matrix as basis functions are weighed orthogonal. The A matrix can 

be written as 
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Similar to MLS, the OMLS approximation is written as 

 
1
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=  =x Φ (x)u,  (12) 

where and Φ is the meshless shape function given by 
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We have used a shifted and scaled approach to provide stability at denser grid points [6].   

3. MLPG Formulation 

The MLPG formulation for the Poisson equation is described below. The equation is solved in the global 

domain Ω bounded by the boundary Γ [21].  

 
( )

2 0            in 

( )            for 

u p

u u

 − = 

= x x x
 (14) 

�̅� is the specified field variable on the boundary Γ. A general weak form for the numerical solution of 

Eq. (14) can be obtained from the weighted residual statement  
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 2  d 0

Q

u p 


  −  =   (15) 

where ΩQ is a local domain and ν is the test function. Continuity requirement of the above equation can 

be reduced by applying divergence theorem, that yields to the weak form given by  

 
, , , , d  d =0

Q Q

x x x xu n v u v pv
 

  − +     (16) 

where ΓQ  denotes the boundary of the local domain, ΩQ  and shorthand notations have been used. If the 

test function in the standard MLPG method is the same as the weight function of the MLS approximation, 

then, it vanishes at the boundary of the local domain. Hence, evaluation of the boundary integral term which 

is completely inside the global domain is not required. The use of MLPG discretization leads to the system 

of algebraic equations. 

 Ku = F  

Where K is the stiffness matrix, u is the vector of unknown nodal parameters, and F is the force vector. 

Elements of stiffness matrix K and force vector F are as follows: 
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The direct interpolation method is used to impose EBCs [22]. 

4. Numerical Results and Discussion 

This section provides numerical results of MLS and OMLS schemes. We have done curve and surface 

fittings tests in one- and two-dimensions respectively. The C/C++ code have been developed, and, numer-

ical test have been conducted on intel core i7 processor with serial programming. Then, results for the 

solution of the Poisson equation, solved by MLPG and OMLS based MLPG (OMLPG), are shown for one- 

and two-dimensions. In all presented results, we have used quadratic basis and quadratic spline weight 

function in both approximations. The number of nodes in the support domain of every evaluation point is 

constant, thus, the radius of the support domain varies accordingly [23]. Absolute error is calculated as 

 Absolute error ( )e

i iu u= −  

where ui and ui
e are approximate and exact values at node i respectively. Relative percentage error is 

calculated by l2 norm 
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where N is the total number of points. The radius of the quadrature domain in the MLPG method is 

calculated as 

  q Q cr d=  

In the present case, we have used a uniform grid, and the dc is grid spacing. The dimensionless parameter 

of the quadrature domain (αQ) is set constant equal to 0.9 in the MLPG implementation. 

4.1 Curve Fitting in 1-D 

In this section results for curve fitting tests in one dimension are shown. The study of convergence and 

accuracy has done for OMLS and it is compared with MLS approximation for a known trigonometric func-

tion.  

We evaluate the function approximation at evaluation points using data in grid points. Five evaluation 

points are distributed between two consecutives grid points in the 1-D domain. The error of approximated 

known function with reference to the exact value of known function has been calculated on these evaluation 

points. We have used 6 number of nodes in the support domain (ns = 6). The trigonometric function used 

is  

 u = sin2(2πx) + cos(2πx) 

Approximated known function, its derivatives, and absolute errors  obtained by both MLS and OMLS 

have been shown in Fig. 1 and Fig. 2 respectively. Errors are the same for both approximations. Results are 

shown for 20 grid points. We also show convergence for both approximations (Fig. 3). The convergence 

rate is as expected and the same for both approximations. The convergence rate of function’s derivative 

approximation is slightly lower than the convergence of function approximation. 

4.2 Surface Fitting in 2-D 

Surface fitting tests are done in the two-dimensional unit square domain. Known trigonometric function  

 u = sin(2π𝑥1) cos(3π𝑥2) 

is approximated by MLS and OMLS in both cases with ns=12. Evaluation points approximately four times 

the number of grid points are distributed in the domain. The function is evaluated on these evaluation points 

using known data in the grid points. The approximation of function converges well by MLS and OMLS, 

however, similar to 1-D case, the convergence rate of function’s derivative approximation is lower Fig. 4. 
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Fig. 1 Approximated functions (above) and absolute errors of 1-D approximation for MLS and OMLS 

(below).  
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Fig. 2 Approximated function derivatives (above) and absolute errors of 1-D approximation for MLS and 

OMLS (below). 
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Fig. 3 Convergence of 1-D function approximation and its derivative approximation for MLS and OMLS. 
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Fig. 4 Convergence of 2-D function approximation and its derivative approximation for MLS and OMLS. 

4.3 MLPG Results in 1-D 

Poisson equation with EBCs is solved by the MLPG method in the one-dimension unity domain.  

 
2

2
0

d u

dx
+ =  (19) 

The value of constant (κ) is assumed 2500 and the specified value of field variable is zero at both bound-

ary nodes. The analytical solution can be obtained directly. Fig. 5 shows the exact solution, MLPG, and 

OMLPG solutions. These results are obtained by using ns = 6, with 8 Gaussian points for numerical inte-

gration and 100 grid points. The accuracy of the MLPG method with both approximations is as expected 

and similar for both methods.  

4.4 MLPG Results in 2-D 

A Poisson equation is solved by MLPG and OMLPG methods in the unit square domain. There is only 

EBCs. A field variable is zero on the boundary. 

 2 2

1 2200 sin( )sin( )u x x   = −  (20) 

An analytical solution is be obtained as  

 
1 2100sin( )sin( )u x x =  

We use 6×6 Gaussian points in the quadrature domain for numerical integration. The circular test domain 

is chosen. Errors are calculated on grid points. Fig. 6 shows an OMLPG solution and absolute error, and, 

we have found the same results for the MLPG method. A convergence of both methods is shown in Fig. 7 
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Both methods have the same accuracy and convergence rate. Computation time for MLPG and OMLPG 

has been compared as shown in Fig. 8. CPU time taken by different modules of the code has been shown 

such as grid generation, searching nodes for support domain, solution of system equations and total time. 

The OMLPG method has low computational cost while generating shape functions. However, the algorithm 

for search nodes in for the support domain shows the highest computational complexity. In Table 1, com-

putational efficiency of OMLS with reference to MLS for generating shape functions is shown. The OMLS 

is approximately 10 % more efficient than MLS.  
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Fig. 5 Comparison of 1-D MLPG solution with different approximation schemes (above) and absolute error 

(below ) . 
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Fig. 6 OMLPG solution in 2D (above) and absolute error (below)  
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Fig. 7 Convergence of MLPG and OMLPG in 2D. 
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Fig. 8 CPU time comparison of MLPG and OMLPG. 

Table 1 Computation time of MLS and OMLS with efficiency of OMLS with reference to MLS. 

Grid points CPUMLS (ms) CPUOMLS (ms) 
η =

100(CPUMLS − CPUOMLS)

CPUMLS

 

100 56.1140 49.8340 11.19 

2500 1918.55 1708.59 10.94 

10000 7970.7300 7012.3800 12.02 

40000 32825.0000 29014.9000 11.60 

90000 74181.3000 66266.8000 10.66 
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5. CONCLUSIONS 

The computational cost of MLS based meshfree methods is significant due to the inversion of the moment 

matrix in the MLS procedure. A new version of MLS has been used with some meshfree methods in which 

weighted orthogonal basis functions are used. This makes the moment matrix diagonal which eliminates 

the inversion process. We have implemented OMLS approximation within the MLPG method to observe 

the performance. The obtained results show that OMLS based MLPG produces the same accuracy and 

convergence rate as the standard MLS based MLPG, however, at approximately 10% lower computational 

cost. In further work, we plan to implement the k-d tree algorithm to improve the efficiency of searching 

support domain nodes and we will test the OMLPG method for the solution of time dependent problems. 
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