Range and Null Space of Weighted Composition Operators on *l*^p Spaces

Pradeep Kumar

Directorate of Census Operations Uttarakhand. L.D. Tower-3, Near Mata Wala Bagh, Saharanpur Road, Dehradun Corresponding author's email: pradeep28-bhu@yahoo.co.in doi: https://doi.org/10.21467/proceedings.100.10

ABSTRACT

Let l^p $(1 \le p \le \infty)$ be the Banach space of all p-summable sequences (bounded sequences for p = 1) of complex numbers under the standard p-norm on it and C_{ϕ} be a composition operator on l^p induced by a function ϕ on **N** into itself. In this paper we discuss range and null space of weighted composition operators on l^p spaces.

Keywords: Range, Null, Weighted Composition operator.

RESULTS

Preposition 1: If *u* is a bounded away from zero then R (uc_{ϕ}) is closed.

Proof: Suppose *u* is a bounded away from zero. Let a > 0 such that $0 < \frac{1}{|u(n)|} \le a$ for each $n \ge 1$.

$$f \in \mathbb{R}(uc_{\phi}) \qquad \Leftrightarrow f = (uc_{\phi}) \ (g) \text{ for some } g \text{ belongs to } l^{p}.$$

$$\Leftrightarrow f(n) = u(n) \ g(\phi(n)) \text{ for each } n \ge 1.$$

$$\Leftrightarrow \frac{f(n)}{u(n)} = g \ (\phi(n)) \text{ for each } n \ge 1.$$

$$\Leftrightarrow \frac{f}{u} \in \mathbb{R}(c_{\phi})$$

$$\Leftrightarrow \left(\frac{f}{u}\right) / A_{n} \text{ is constant } [24].$$

Let $(f_m)_{m=1}^{\infty}$ be a sequence in $R(uc_{\phi})$ for each $f_m \to f$ as $m \to \infty$.

Then by definition of convergence $||f_m - f||_p \to 0$ as $m \to \infty$. This implies that for each $n \ge 1$, $|f_m(n) - f(n)| \to 0$ as $m \to \infty$.

Now,
$$\left|\frac{1}{u(n)}f_m(n) - \frac{1}{u(n)}f(n)\right| = \left|\frac{1}{u(n)}\left\{f_m(n) - f(n)\right\}\right| = \frac{1}{|u(n)|}\left|f_m(n) - f(n)\right|$$

 $\leq a \left|f_m(n) - f(n)\right| \to 0 \text{ as } m \to \infty \text{ for each } n \geq 1.$
Hence $\frac{1}{u(n)}f_m(n)$ converges to $\frac{1}{u(n)}f(n)$ for each $n \geq 1.$

© 2020 Copyright held by the author(s). Published by AIJR Publisher in Proceedings of "International Conference on Applied Mathematics & Computational Sciences" (ICAMCS-2019) October 17th–19th, 2019. Organized by DIT University, Dehradun, India. Proceedings DOI: 10.21467/proceedings.100; Series: AIJR Proceedings; ISSN: 2582-3922; ISBN: 978-81-942709-6-6 (eBook)

Since
$$\left(\frac{f_m}{u}\right) / A_n$$
 is constant for each $n \ge 1$ and $f_m \to f$.
Thus $\left(\frac{f}{u}\right) / A_n$ is constant for each $n \ge 1$. Therefore, f belongs to $R(uc_{\phi})$

Hence $R(uc_{\phi})$ is closed.

Preposition 2: If $\lim u(n) = 0$ then $R(uc_{\phi})$ is closed if and only if s(u) is finite.

Proof: <u>Case-I</u>: Suppose *s* (*u*) is finite then *R* (uc_{ϕ}) is finite dimensional. Therefore *R* (uc_{ϕ}) is closed.

<u>**Case-II**</u>: Suppose *s* (*u*) is an infinite set. Since $\lim_{n \to \infty} u(n) = 0$, it follows [24] that (uc_{ϕ}) is

compact.

As set s(u) is not finite, so range (uc_{ϕ}) is not finite dimensional. But a compact operator has closed range if and only if its range is finite dimensional. Hence $R(uc_{\phi})$ is not closed.

Preposition 3: If $\lim_{n \to \infty} u(n) \neq 0$, s(u) is not finite and u is not bounded away from zero then $R(uc_{\phi})$ is not closed.

Proof: Since *u* is not bounded away from zero there exists a subsequence $\{n_k\}_{k=1}^{\infty}$ such that $u(n_k) \neq 0$;

for each $k \ge 1$ and $u(n_k) \rightarrow 0$.

Let
$$v(n) = \begin{cases} 0 & \text{if } n \neq n_k \\ u(n_K) & \text{if } n = n_k \end{cases}$$
. Then $v \in l^{\infty}$ (as $u \in l^{\infty}$).

And $\lim_{k \to \infty} v(k) = 0$. Further *s*(*v*) is not finite. Therefore (*v c*_{ϕ}) is not closed.

Hence there exists a function $f \in l^p$ such that $f \notin R$ ($v c_{\phi}$).

 $f \notin R(u c_{\phi}) \Longrightarrow f \neq v (g_o \phi)$ for each $g \in l^p$.

There exists a natural number k such that $f(k) \neq v(k) g(\phi(k))$

But $f \in \overline{R(v c_{\phi})}$. Since $f \in \overline{R(v c_{\phi})}$. Therefore f(n) = 0 whenever $n \notin s(v)$.

This implies that f (*n*) = 0 whenever $n \neq n_k$.

Let *g* be any vector in l^p then $f \notin R$ ($v c_{\phi}$).

This implies that
$$f \neq v (g_o \phi)$$
 $\Rightarrow f(n_k) \neq v (n_k) g(\phi(n_k))$
 $\Rightarrow f(n_k) \neq u(n_k) g(\phi(n_k))$ for some $k \in \mathbf{N}$.
 $\Rightarrow f \notin R(u c_{\phi})$

But $f \in \overline{R(v c_{\phi})} \Rightarrow f \in \overline{R(u c_{\phi})}$. Therefore $R(u c_{\phi})$ is not closed.

Theorem1: Suppose $u \in l^{\infty}$ is a bounded away from zero. Then the range space of (uc_{ϕ}) is given by,

 $R(uc_{\phi}) = \{f \in l^p : f / A_n \text{ is constant for each } n \in s(u)\}$ where $A_n = \{m \in s(u) : \phi(m) = n\}$.

Proof: Suppose *f* belongs to *R* (uc_{ϕ}). For *n* in **N** and $A_n = \{m \in s(u) : \phi(m) = n\}$, we have to prove that f / A_n is constant. Let m_1 and m_2 be any two points in A_n . We need to show that $f(m_1) = f(m_2)$.

Since *f* belongs to $R(uc_{\phi})$, there is a function *g* in l^p for each $(uc_{\phi})(g) = f$.

In particular, $u(m_1) g(\phi(m_1)) = f(m_1) \implies g(\phi(m_1)) = \frac{f(m_1)}{u(m_1)}$ and $u(m_2) g(\phi(m_2)) = f(m_2) \implies g(\phi(m_2)) = \frac{f(m_2)}{u(m_2)}$

Given that m_1 and m_2 belongs to s(u), therefore $u(m_1) \neq 0$ and $u(m_2) \neq 0$.

Since $\phi(m_1) = \phi(m_2) = n$, we get that

 $g(n) = f(m_1)/u(m_1)$ and $g(n) = f(m_2)/u(m_2)$

Therefore
$$\frac{f(m_1)}{u(m_1)} = \frac{f(m_2)}{u(m_2)} = g(n)$$

Therefore f / A_n is constant, for each $n \in s(u)$ where $A_n = \{m \in s(u): \phi(m) = n\}$.

Conversely suppose that f belongs to l^p and f/A_n is constant for each n in **N**. Define g on **N** into **C** in the following way:

$$g(n) = \begin{cases} \frac{f(m_n)}{u(m_n)} & \text{for some } m \text{ belongs to } A_n \text{ if } A_n \text{ is not empty} \\ 0, & \text{if } A_n \text{ is empty.} \end{cases}$$

g is well defined because *f* is constant on *A_n* for each *n*. It can be easily seen that *g* belongs to l^p . Also $(uc_{\phi})(g)(n) = u(n)g(\phi(n))$ = f(n) for *n* belongs to **N**. Thus $(uc_{\phi})(g) = f$. Hence *f* belongs to *R* (uc_{ϕ}) .

Theorem 2: Suppose $u \in l^{\infty}$ is bounded away from zero. Then the weighted composition

operator (uc_{ϕ}) on l^{p} is onto if and only if ϕ is one to one.

Proof: First suppose that ϕ is one to one. Let g be any function in l^p . Since ϕ is one to one, for each m in ϕ (N) there is unique n in N for each $\phi(n) = m$. Now we define a function f on N into C in the following way. For $m \in \phi(\mathbf{N})$, let

$$f(\mathbf{m}) = \begin{cases} \frac{g(n)}{u(n)} & \text{where } n \text{ is the unique element of } \mathbf{N} \text{ such that } \phi(n) = m \\ 0, & \text{if } m \notin \phi(\mathbf{N}) \end{cases}$$

Now,
$$\sum_{m \in \mathbb{N}} |f(m)|^2 = \sum_{m \in \phi(\mathbb{N})} |f(m)|^2 = \sum_{n \in \mathbb{N}} \left| \frac{g(n)}{u(n)} \right|^2 \le \frac{1}{a^2} \sum |g(n)|^2 = \frac{1}{a^2} ||g||^2$$

Hence f belongs to l^2 .

We have $(uc_{\phi})(f)(n) = u(n)f(\phi(n)) = u(n)f(m) = g(n)$

Therefore $(uc_{\phi})(f) = g$. Thus (uc_{ϕ}) is onto.

 $(uc_{\phi})(f)(n_1)$

Conversely suppose that (uc_{ϕ}) is onto. We have to show that ϕ is one to one. For n_1 and n_2 in N, assume that $\phi(n_1) = \phi(n_2)$. The function $\chi_{n_1} \in l^p$. Since (uc_{ϕ}) is onto, there is a function g in l^p for each

$$(uc_{\phi})(f) = \chi_{n_1}$$

Hence

$$e \quad (uc_{\phi})(f)(n_{1}) = \chi_{n_{1}}(n_{1}) \implies u(n_{1})f(\phi(n_{1})) = 1$$
$$f(\phi(n_{1})) = \frac{1}{u(n_{1})}(\because n_{1} \in s(u))$$

Also

 \Rightarrow

 $(uc_{\phi})(f)(n_2) = \chi_{n_1}(n_2) = \delta_{n_1,n_2}$ where δ_{n_1,n_2} is kronecker delta. i.e.

$$u(n_2)f(\phi(n_2)) = \delta_{n_1,n_2} \Rightarrow f(\phi(n_2)) = \frac{\delta_{n_1,n_2}}{u(n_2)} \quad (\because n_2 \in s(u))$$

But, $\phi(n_1) = \phi(n_2)$. Thus f $(\phi(n_1)) = f(\phi(n_2))$. Therefore $u(n_1) f(\phi(n_1)) = u(n_2) f(\phi(n_2)).$ Thus $1 = \delta_{n_1 n_2} \Longrightarrow n_1 = n_2$. Hence ϕ is one to one.

Theorem 3: Suppose $u \in l^{\infty}$ is bounded away from zero. Then the weighted composition

operator (uc_{ϕ}) on l^{p} is one to one if and only if ϕ is onto.

Proof: Suppose that ϕ is onto. We need to show that uc_{ϕ} is one to one. For f and g in l^{p} , we have

 $(uc_{\phi})(f) = (uc_{\phi})(g) \implies (uc_{\phi})f(n) = (uc_{\phi})g(n)$ for each *n* belongs to **N**.

 $u(n) f(\phi(n)) = u(n) g(\phi(n))$ for each *n* belongs to **N**. \Rightarrow

$$\Rightarrow$$
 $f(\phi(n)) = g(\phi(n))$ for each *n* in **N**.

Thus f = g (since ϕ is onto).

Therefore the weighted composition operator (uc_{ϕ}) is one to one.

Conversely suppose that (uc_{ϕ}) is one to one, we need to show that ϕ is onto.

Since $(uc_{\phi})(0) = 0$ and (uc_{ϕ}) is one to one, it follows that for each natural number n.

$$(uc_{\phi})(\chi_n) \neq 0$$
 i.e. $u(n)\chi_{\phi^{-1}(n)} \neq 0 \Rightarrow \chi_{\phi^{-1}(n)} \neq 0$. Therefore ϕ -1(n) is non-empty for each natural number n. Hence ϕ is onto

number n. Hence ϕ is onto.

Theorem 4: Suppose $u \in l^{\infty}$ is bounded away from zero and (uc_{ϕ}) is a weighted composition

operator on l^p , then for $f = \sum f(n)\chi_n$

$$(uc_{\phi})^*(f) = \sum \overline{u(n)}f(n)\chi_{\phi(n)}$$
.

Proof: For each g in l^p , we have $\langle (uc_{\phi})(g), \chi_n \rangle = \langle g, (uc_{\phi})^* (\chi_n) \rangle$

In particular, the above equation is true for $g = \chi_m$ for each *m* in **N**.

Therefore
$$\langle (uc_{\phi})(\chi_m), \chi_n \rangle = \langle \chi_m, (uc_{\phi})^*(\chi_n) \rangle$$
. Now

$$\left\langle \left(uc_{\phi}\right)(\chi_{m}), \chi_{n}\right\rangle = \left(uc_{\phi}\right)(\chi_{m})(n) \qquad = \mathbf{u}(n) \ \chi_{\phi^{-1}(m)}(\mathbf{n}) = \begin{cases} u(n) & \text{if } n \in \phi^{-1}(m) \\ 0, & \text{if } n \notin \phi^{-1}(m) \end{cases}$$

Range and Null Space of Weighted Composition Operators on lp Spaces

Also
$$\langle \chi_m, (uc_{\phi})^*(\chi_n) \rangle = (uc_{\phi})^*(\chi_n)(m)$$
 where — denotes complex conjugation.
Thus $(uc_{\phi})^*(\chi_n)(m) = \begin{cases} \overline{u(n)} & \text{if } n \in \phi^{-1}(m) \\ 0, & \text{if } n \notin \phi^{-1}(m) \end{cases}$
i.e. $(uc_{\phi})^*(\chi_n)(m) = \begin{cases} \overline{u(n)} & \text{if } \phi(n) = m \\ 0, & \text{otherwise} \end{cases}$
i.e. $(uc_{\phi})^*(\chi_n) = \overline{u(n)} \chi_{\phi(n)}$
If $f = \sum_{n=1}^{\infty} f(n)\chi_n$ then $(uc_{\phi})^*(f) = \sum_{n=1}^{\infty} \overline{u(n)}f(n)\chi_{\phi(n)}$

Theorem 5: Suppose $u \in l^{\infty}$ is bounded away from zero and (uc_{ϕ}) be a weighted composition

operator on l^p . Then the null space of $(uc_{\phi})^*$ is given by,

$$N\left((uc_{\phi})^*\right) = \left\{ f \in l^2 : \sum_{m \in A_n} f(m) = 0 \text{ for each } n \text{ in } s(u) \right\} \text{ where } A_n = \{m \in s(u) : \phi(m) = n\}.$$

Proof: Suppose that f belongs to N $((uc_{\phi})^*)$, then $(uc_{\phi})^*$ (f) = 0. Assume that $f = \sum_{m \in \mathbb{N}} f(m)\chi_m$. Then $(uc_{\phi})^*$ $(f) = \sum_{m \in \mathbb{N}} \overline{u(m)}f(m)\chi_{\phi(m)}$ by theorem 4.

$$=\sum_{m\in\mathbb{N}}\left[\sum_{m\in A_n}\overline{u(m)}f(m)\chi_{\phi(m)}\right]=\sum_{m\in\phi(\mathbb{N})}\left[\sum_{m\in A_n}\overline{u(m)}f(m)\right]\chi_n$$

since $(uc_{\phi})^*(f) = 0$, we get $\sum_{m \in A_n} \overline{u(m)} f(m) = 0$ for n in $\phi(N)$. But $\sum_{m \in A_n} \overline{u(m)} f(m) = 0$ for each n

in $\phi(\mathbf{N})$. Thus we get $\sum_{m \in A_n} f(m) = 0$ for each $n \in s(u)$.

Conversely suppose that f belongs to l^p such that $\sum_{m \in A_n} f(m) = 0$ for each n in s(u).

Then from the expression
$$(u c_{\phi})^*(f) = \sum_{m \in \phi(N)} \left[\sum_{m \in A_n} \overline{u(m)} f(m) \right] \chi_n$$

It follows easily that $(uc_{\phi})^*(f) = 0$. Therefore f belongs to N $((uc_{\phi})^*)$

Theorem 6: Suppose $u \in l^{\infty}$ is bounded away from zero and (uc_{ϕ}) be a weighted composition operator on l^{p} . Then the range space of $(uc_{\phi})^{*}$ is given by,

$$\mathbf{R} ((uc_{\phi})^*) = \left\{ f \in l^p : f / \mathbf{N} - \phi(\mathbf{N}) = 0 \right\}.$$

Proof: Suppose f belongs to R ($(uc_{\phi})^*$). Then there exists a function g in l^p for each

$$(uc_{\phi})^*(g) = f$$
. Suppose $g = \sum g(n)\chi_n$. Then $(uc_{\phi})^*(g) = \sum \overline{u(n)} g(n) \chi_{\phi(n)}$
It follows that for *m* belongs to $\mathbf{N} - \phi(\mathbf{N}), (uc_{\phi})^*(g)(m) = 0$
Therefore $f(m) = 0$ for each $m \in \mathbf{N} - \phi(\mathbf{N})$

Proceedings DOI: 10.21467/proceedings.100 ISBN: 978-81-942709-6-6 Conversely assume that $f \in l^p$ and f(m) = 0 for each $m \in \mathbb{N} - \phi(\mathbb{N})$. We need to show that $f \in \mathbb{R}$ $((uc_{\phi})^*)$. We have $\mathbb{N} = \bigcup_{n \in \phi(\mathbb{N})} A_n$, where $A_n = \{m \in \mathbb{N} : \phi(m) = n\}$.

We notice that for $n \in \phi(\mathbf{N})$, each A_n is non empty finite subset of **N**. Let \overline{A}_n denote the number of elements in A_n . Let

$$g = \sum_{\substack{m=1\\ \phi(m)=n}}^{\infty} \frac{f(n)}{\overline{u(n)}} \overline{\overline{A}_n} \chi_m$$

Then
$$\sum_{m \in \mathbb{N}} |g(m)|^2 = \sum_{n \in \phi(\mathbb{N})} \left[\sum_{m \in A_n} |g(m)|^2 \right] = \sum_{n \in \phi(\mathbb{N})} \left[\sum_{m \in A_n} \left| \frac{f(n)}{\overline{u(n)}} \right|^2 \right]$$

$$= \sum_{n \in \phi(\mathbb{N})} \left[\frac{\overline{A}_n}{\overline{A}_n} \frac{|f(n)|^2}{|\overline{u(n)}|^2 \overline{A}_n^2} \right] = \sum_{n \in \phi(\mathbb{N})} \frac{|f(n)|^2}{\overline{|u(n)|}^2 \overline{A}_n}$$
$$\leq \sum_{n \in \phi(\mathbb{N})} \frac{|f(n)|^2}{|\overline{u(n)}|^2} < \infty \text{ (since } \overline{A}_n \ge 1 \text{ for each } n \in \phi(\mathbb{N}) \text{ and } u \in l^\infty \text{)}$$

Hence g belongs to l^p . Now we shall show that $(uc_{\phi})^*(g) = f$. We have,

$$(uc_{\phi})^{*}(g) = \sum_{\substack{m=1\\ \phi(m)=n}}^{\infty} \frac{\overline{u(n)} f(n)}{\overline{u(n)} \overline{\overline{A}}_{n}} \chi_{\phi(m)} = \sum_{n \in \phi(N)} \left[\sum_{m \in A_{n}} \frac{f(n)}{\overline{\overline{A}}_{n}} \chi_{\phi(m)} \right]$$
$$= \sum_{n \in \phi(N)} \left[\overline{\overline{A}}_{n} \frac{f(n)}{\overline{\overline{A}}_{n}} \chi_{(n)} \right] = \sum_{n \in \phi(N)} f(n) \chi_{(n)} = f(\operatorname{sin} \operatorname{ce} f / N - \phi(N) = 0) \quad \bullet$$

Corollary: The range space $R((uc_{\phi})^*)$ is a closed subspace of l^p .

- **Proof:** Let $(f_n)_{n=1}^{\infty}$ be a sequence in $R((uc_{\phi})^*)$ for each $(f_n)_{n=1}^{\infty}$ converges to f in l^p . Since $f_n / N \phi(N) = 0$ and converges in l^p implies pointwise convergence, it follows that the limit function f = 0 on $N \phi(N)$. Thus $f \in R((uc_{\phi})^*)$. Hence $R((uc_{\phi})^*)$ is a closed subspace of l^p .
- **Theorem 7:** Suppose $u \in l^{\infty}$ is bounded away from zero and (uc_{ϕ}) be a weighted composition operator on l^{p} . Then the adjoint $(uc_{\phi})^{*}$ of weighted composition operator (uc_{ϕ}) is one to one if and only if ϕ is one to one.
- **Proof:** Suppose $(uc_{\phi})^*$ is a one to one. We need to show that ϕ is one to one. For *n* and *m* in **N**. $\phi(n) = \phi(m)$ $\Rightarrow \chi_{\phi(n)} = \chi_{\phi(m)} \Rightarrow (uc_{\phi})^* (\chi_n) = (uc_{\phi})^* (\chi_m) \Rightarrow \chi_n = \chi_m \text{ (since } (uc_{\phi})^* \text{ is one to one)} \Rightarrow n = m$ $\Rightarrow \phi$ is one to one.

Conversely assume that ϕ is one to one. We need to show that $(uc_{\phi})^*$ is one to one.

For
$$f = \sum_{n=1}^{\infty} f(n)\chi_n$$
 and $g = \sum_{n=1}^{\infty} g(n)\chi_n$ in l^p , $(uc_{\phi})^*$ $(f) = (uc_{\phi})^*$ (g) . This implies that

$$\sum_{n=1}^{\infty} \overline{u(n)} f(n) \chi_{\phi(n)} = \sum_{n=1}^{\infty} \overline{u(n)} g(n) \chi_{\phi(n)}.$$
 Thus $f(n) = g(n)$ for each $n \in \mathbb{N}$ because ϕ is one to one.

Therefore f = g. Hence $(uc_{\phi})^*$ is one to one.

- **Theorem 8:** Suppose $u \in l^{\infty}$ is bounded away from zero and (uc_{ϕ}) is a weighted composition operator on l^{p} . Then the adjoint $(uc_{\phi})^{*}$ of a weighted composition operator (uc_{ϕ}) is onto if and only if ϕ is onto.
- **Proof:** Suppose $(uc_{\phi})^*$ is onto. We need to show that ϕ is onto. Let *m* be any natural number, then $\chi_m \in l^p$. Since $(uc_{\phi})^*$ is onto, there is a function $f = \sum f(n)\chi_n$ in l^p such that

$$(uc_{\phi})^{*}(f) = \chi_{m}$$
 i.e. $\sum \overline{u(n)} f(n) \chi_{\phi(n)} = \chi_{m}.$

There is a natural number *n* for each $\phi(n) = m$. Hence ϕ is onto.

Conversely assume that ϕ is onto. We need to show that $(uc_{\phi})^*$ is onto. Let $g = \sum_{m=1}^{\infty} g(m)\chi_m$ be

any function in l^p . Since ϕ is onto for each m in \mathbf{N} , $A_m = \phi^{-1}(m)$ is non-empty. Let P be a set consisting of precisely one number from each of the sets A_n for m in \mathbf{N} . Let f =

$$\sum_{\substack{m\in\mathbb{N}\\ m\in P, \phi(n)=m}} \frac{g(m)}{u(m)} \chi_n \text{ . Then}$$

$$(uc_{\phi})^{*}(f) = \sum_{\substack{m \in \mathbb{N} \\ n \in P, \phi(n) = m}} \overline{u(m)} \frac{g(m)}{u(m)} \chi_{\phi(n)} = \sum_{m \in \mathbb{N}} g(m) \chi_{m} = g$$

Hence $(uc_{\phi})^*$ is onto.

Corollary: Suppose $u \in l^{\infty}$ is bounded away from zero then $(uc_{\phi})^*$ is invertible if and only if

 ϕ is invertible.

Proof: Proof follows from theorem 7 and 8.

- **Theorem 9:** Suppose $u \in l^{\infty}$ is bounded away from zero. Then the adjoint $(uc_{\phi})^*$ of a weighted composition operator (uc_{ϕ}) is a weighted composition operator if and only if ϕ is one to one and onto.
- **Proof:** Suppose ϕ is one to one and onto. We need to show that adjoint $(uc_{\phi})^*$ is a Weighted composition operator. We have to find a function ψ on **N** into itself such that

$$(uc_{\phi})^*(f) = u c_{\psi}(f)$$
 for each f in l^p .

Let $\psi = \phi^1$ (since ϕ is one to one and onto). To show that $(uc_{\phi})^* = (\overline{u} c_{\psi})$, it is sufficient to show that $(uc_{\phi})^* (\chi_n) = (u'c_{\psi}) (\chi_n)$ for each $n \in s(u)$.

Thus we need to show that $(uc_{\phi})^*(\chi_n)(m) = (u'c_{\psi})(\chi_n)(m)$.

i.e. $u(m) \chi_{\phi(n)}(m) = u'(m) \chi_{w'^{-1}(n)}(m)$

But $\psi^1(n) = (\phi^1)^{-1}(n) = \phi(n)$. Thus we have to show that $u(m) \chi_{\phi(n)}(m) = u'(m) \chi_{\phi(n)}(m)$ which is obviously true. Therefore $(uc_{\phi})^*$ is a weighted composition operator and $(uc_{\phi})^* = uc_{u-1}$.

Conversely assume that $(uc_{\phi})^*$ is a weighted composition operator. We need to show that ϕ is one to one and onto and $(uc_{\phi})^* = uc_{a^{-1}}$. Since $(uc_{\phi})^*$ is a weighted composition operator there is a function ψ on **N** into itself for each $(uc_{\phi})^* = u'c_{\psi}$. Therefore $(uc_{\phi})^* (\chi_n) = (u'c_{\psi})(\chi_n)$ for each $n \in$ s(u). Thus $(uc_{\phi})^*(\chi_n)(m) = (u'c_{\psi})(\chi_n)(m)$ for each $m \in \mathbf{N}$.

Therefore $u(m) \chi_{\phi^{-1}(n)}(m) = u'(m) \chi_{w'^{-1}(n)}(m)$.

Hence $\overline{u(m)} \chi_{\phi^{-1}(n)}(m) = u'(m)\chi_n(\psi(m))....(1)$

Let $m = \phi(n)$ in eqn. (1), then we get $u(m) \chi_{\phi(n)}(\phi(n)) = u'(m) \chi_n(\psi(\phi(n)))$. Therefore $\psi(\phi(n)) = n$, and u'(n) = u(n) for each $n \in s(u)$. Thus $\psi \circ \phi = I$. Hence ϕ is one to one. Again in the equation (1) we put $n = \psi(m)$, we get $\chi_{\phi(\psi(m))}(m) = \chi_{\psi(m)}(\psi(m))$ Thus we get $\phi(\psi(m)) = m$. Therefore $\phi \circ \psi = I$. Hence ϕ is onto. Thus ϕ is one to one and onto.

References

- [1] Aupetit B.; Primer on Spectral Theory, Springer-Verlag, New-York 1991.
- [2] Burgos M., Kaidi A., Mbekhta M., Oudghiri M.; The Descent Spectrum and Perturbations, J. Operator Theory 56(2006), 259-271.
- [3] Carlson J.W.; The Spectra and Commutants of Some Weighted Composition Operators, Trans.Amer.math.Soc.317 (1990), 631-654.
- [4] Carlson J.W.; Hyponormal and Quasinormal Weighted Composition Operators on 12, Rocky Mountain J.Math.20 (1990), 399-407.
- [5] Chandra H., Kumar P.; Ascent and Descent of Composition Operators On lp Spaces, Demon stratio Mathematica XLIII, No.1 (2010),161-165.
- Chandra H., Kumar P.; Essential Ascent and Essential Descent of a Linear Operator and a Composition [6] Operator, preprint.
- [7] Grabiner S.; Uniform Ascent and Descent of Bounded Operators, J. Math. Soc.Japan 34(1982),317-337.
- [8] Halmos P.R.; A Hilbert Space Problem Book, Van Nostrand, Princeton, N.J., 1967.
- [9] Komal, B.S., and Singh R.K.; Composition Operators on l^p and its Adjoint, Proc.Amer.Math.Soc.70 (1978), 21-25.
- [10] Kelley, R.L.; Weighted Shifts on Hilbert Space, Dissertation, University of Michigan, Ann Ar bor, 1966.
- [11] Kumar A., Singh R.K.; Multiplication Operators and Composition Operators with Closed Ranges. Bull.Austral.Math.Soc.16 (1977), 247-252.
- Kumar, D.C.; Weighted Composition Operators, Thesis University of Jammu, 1985. [12]
- Kumar R.; Ascent and Descent of Weighted Composition Operators On l^p spaces, Matmatick Vesnik [13] 60(2008),47-51.

- [14] Kaashoek M.A.; Ascent, Descent, Nullity and Defect: A Note On a Paper by A.E.Taylor Math.Ann ; 172(1967),105-115.
- [15] Kaashoek M.A., Lay D.C.; Ascent, Descent and Commuting Perturbations, Trans. Amer. Math. Soc. 169(1972), 35-47.
- [16] Lay D.C.; Spectral Analysis Using Ascent, Descent, Nullity and Defect ; Math. Ann. 184(1970),197-214.
- [17] Lal N., Tripathi G.P.; Composition Operators on l² of the form Normal Plus Compact, J. Indian. Math. Soc. 72(2005), 221-226.
- [18] Mbekhta M.; Ascent, Descent et Spectre Essential Quasi-Fredholm, Rend. Circ. Math. Palermo(1997),175-196.
- [19] Mbekhta M., Muller V.; On the Axiomatic Theory of Spectrum II, Studia Math. (1996), 129-147.
- [20] Nordgren E.A.; Composition Operators on Hilbert Spaces, J.Math. Soc.Japan 34(1982), 317-337.
- [21] Nordgren E.A.; Composition Operators, Canada. J.Math.20 (1968), 442-449.
- [22] Parrott S.K., Weighted Translation Operators, Thesis, University of Michigan, Ann Arbor, 1965.
- [23] Shields A.L.; Weighted Shift Operators and Analytic Function Theory, Topics in Operator Theory(C.Pearcy,ed.), Math.Surveys, no.(13), Amer. Math. Soc., Providence, R.I., 1974, 49-128.
- [24] Singh L.; A Study of Composition Operators on *l*², Thesis, Banaras Hindu University 1987.
- [25] Tripathi G.P.; A Study of Composition Operators and Elementary Operators, Thesis, Banaras Hindu University 2004.
- [26] Taylor A.E., Lay D.C.; Introduction to Functional Analysis, John- Wiley, New York Chichester-Brisbane 1980.
- [27] Whitley R.; Normal and Quasinormal Composition Operators, Proc. Amer. Math. Soc. 70(1978), 114-118.