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ABSTRACT

Let I°P (1 < p < ) be the Banach space of all p-summable sequences (bounded sequences for p = 1) of
complex numbers under the standard p-norm on it and Cy be a composition operator on IP induced by a
function ¢ on N into itself. In this paper we discuss range and null space of weighted composition
operators on IP spaces.
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RESULTS
Preposition 1: If u is a bounded away from zero then R (ucy) is closed.

Proof: Suppose u is a bounded away from zero. Let a> 0 such that 0 < —— | | <aforeachn>1.
f eR(ucy) < f = (ucy) (g) for some g belongs to IP.
< f(n) =u(n) g(4(n)) foreachn>1.

= m =g (4(n)) for each n>1.
u(n)

o i € R(cy)
u
f .
&= (UJ [ A, is constant [24].

Let (fm )ﬁzl be a sequence in R (ucy) for each f, > f as m— oo,

Then by definition of convergence ||fm — f ||,— 0 as m— oo. This implies that for eachn>1, |fwn(n)
—f(n)>0asm— .

f ()——f( )‘ | fn(n) = £ ()

1
—— If — f
‘u(n){ m(") (””{ Ju(n)]

<a |f,(n)—f(n)] - 0asm— o foreachn>1.

Now, ‘

1
u() "

Hence L f,(n) converges to % f(n) foreachn>1.
u(n
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) f )
Since (—m]/An is constant for each n > 1 and f,, — f.
u

Thus (ij/ Ay is constant for each n > 1. Therefore, f belongs to R (ucy).
u

Hence R (ucy) is closed. =

Preposition 2: If lim u(n) =0 then R (ucy) is closed if and only if s (u) is finite.

n—oo
Proof: Case-1: Suppose s (u) is finite then R (ucy) is finite dimensional. Therefore R (ucy) is
closed.
Case-11: Suppose s (u) is an infinite set. Since lim u(n) =0, it follows [24] that (uc,) is

n—oo
compact.
As set s(u) is not finite, so range (ucy) is not finite dimensional. But a compact operator has
closed range if and only if its range is finite dimensional. Hence R(ucy) is not closed.

Preposition 3: If  lim u(n) =0, s (u) is not finite and u is not bounded away from zero then
n—oo

R (ucy) is not closed.
Proof: Since u is not bounded away from zero there exists a subsequence {nk }le such that u (nk) = 0;

for each k > 1 and u(ny) — 0.
if n=n,

0
Letv(n) = . .Thenv el”(asue ).
u(ng) if n=n,

And kIim v(k) = 0. Further s (v) is not finite. Therefore (v c,) is not closed.
—>0

Hence there exists a function fe I’ such that f ¢ R (v ¢,).
f R(ucy) = f=v(goy) for eachge I’.
There exists a natural number k such that f (k) = v (k) g (¢#(k))

Butf € R(v ;). Since f € R(v ¢;) . Therefore f (n) = 0 whenever ngs (v).

This implies that f (n) = 0 whenever n # ny.

Let g be any vector in IP then f ¢R (v ¢y).

This implies that f = v (go¢) = f(n) =V () g (k)
= f(nk) = u(nk) g(¢(nk)) for some ke N.
=f ¢R(ucy)

Butf € R(v ¢;) = f € R(ucy). Therefore R (u cy) is not closed. .
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Theorem1: Suppose ue |1”is a bounded away from zero. Then the range space of (ucy) is
given by,
R (ucy) ={f e IP: f/ A, is constant for each n e s(u)} where A, = {m € s(u) : ¢(m) = n}.
Proof: Suppose f belongs to R (ucy). For nin N and A, = {m e s(u) : ¢(m) = n}, we have to prove that f/
An is constant. Let m; and m; be any two points in A,. We need to show that f (m1) = f (m,).
Since f belongs to R (ucy), there is a function g in IP for each (ucy) (g) =f .

In particular, u(my) g (g(m))=Ff(m) = g (gm))= fmy)
u(my)

and  u(m) g (Km) = (m) = g (Km)= 2
u(my)

Given that my and m; belongs to s(u), therefore u(ms) = 0 and u(my) = 0.
Since ¢@(m1) = g(m2) = n, we get that

g() = f(m)/u(my)and g(n) = f(my)/u(m,)

f(my) _ F(my)
u(my)  u(my)
Therefore f/ A, is constant, for each n € s (u) where A, = {m € s (u): gm) =n}.

Conversely suppose that f belongs to IP and f/ A, is constant for each nin N. Define g on N
into C in the following way:

Therefore =g(n)

f(m,) ) )
—T2 for some m belongs to A, if is not e
g (=1 u(m) gs to Ay if A, mpty

0, if A,isempty.
g is well defined because f is constant on A, for each n . It can be easily seen that g belongs to IP.
Also  (ucy) (@) (n)  =u(n)g(4n))
=f (n) for n belongs to N.
Thus (ucy) (@) =1 Hence f belongstoR (ucy). =

Theorem 2: Suppose ue 1”7 is bounded away from zero. Then the weighted composition
operator (ucy) on I? is onto if and only if ¢ is one to one.
Proof: First suppose that ¢is one to one. Let g be any function in I°. Since ¢ is one to one, for each min ¢
(N) there is unique n in N for each ¢ (n) = m. Now we define a function f on N into C in the
following way. For m € ¢ (N), let

9(n) where nis the unique element of N suchthat ¢(n)=m

f(m)= qu(n)
0, if me@(N)
2
n 1 1

Now, [fm)f = SfmP =3 B < L5 gmp= g2

meN meg(N) an (u(n) a a
Hence f belongs to I%.
We have (ucy) (f) (n) =u (n) f(4(n)) =u(n) f(m) = g (n)
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Therefore (ucy) (f) = g. Thus (ucy) is onto.
Conversely suppose that (ucy) is onto. We have to show that ¢ is one to one. For n; and nz in N,
assume that ¢(n1) = ¢(n2). The function Xn, € I°. Since (ucy) is onto, there is a function g in IP for

each
(ucy) (7) = I
Hence (ucy) () () = xp (M) = u(n) f(gn)) =1
S )T —— (mesw)
u(ng)
Also (ucy) M (n) = Xn, (n2) = 5n1’n2 where 5n1,n2 is kronecker delta. i.e.
5I’l n
um) F () = Gy, = FA) = 5 (N2 € s(W)
’ u(ny)

But, ¢(n1) = ¢(nz). Thus f (4(n1)) = f (&(n2)).
Therefore u (n1) f (#(n1)) = u(n2) f (Hno)).
Thus 1 = 5n1,n2 => N1 = 2. Hence ¢ is one to one. .

Theorem 3: Suppose ue 1*is bounded away from zero. Then the weighted composition
operator (ucy) on I” is one to one if and only if ¢ is onto.
Proof: Suppose that ¢ is onto. We need to show that uc, is one to one. For fand g in I°, we have
(ucy) (f) = (ucy) (@) = (ucy) f(n) = (ucy) g (n) for each n belongs to N.
= u(n) f(g(n)) =u(n) g (¢(n)) foreach n belongsto N.
= f(#(n)) = g (4(n)) foreachninN.
Thus f = g (since ¢ is onto).
Therefore the weighted composition operator (ucy) is one to one.
Conversely suppose that (ucy) is one to one, we need to show that ¢ is onto.
Since (ucy) (0) =0 and (ucy) is one to one, it follows that for each natural number n.
(ucy) (xn) #0i.e.u(n) ;(¢,1(n) #0=> ;(¢,1(n) # 0. Therefore ¢-1(n) is non-empty for each natural
number n. Hence ¢ is onto. Ll
Theorem 4: Suppose u e 1”is bounded away from zero and (uc) is a weighted composition
operator on I°, then for =" f(n)y,

(ueo)* () =2 u(mf () z(0) -
Proof: For each g in I°, we have <(uc¢ Xg), ;(n> = <g, (uc¢)* ()(n )>

In particular, the above equation is true for g = ym for each min N.
Therefore <(uc¢ le ) ;(n> = <;(m : (uc¢ )* (2n) > . Now

T -1
e o
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Also <;(m , (uc¢ )* (;(n) > = ‘uc¢ i*i;{n m) where — denotes complex conjugation.

u()  if neg’(m)
Th * (1 =
us (uc)* (zn) (m) { 0. if negim)
o oy m = i rf¢(n)_=m
0, otherwise
e, Ue)*(m) = u(n) z4m
IFf=">" f(n)y, then (ucy)* () = ilﬁf(n)w(n) .
n=1 n=

Theorem 5: Suppose u e 1”is bounded away from zero and (uc,) be a weighted composition
operator on I°. Then the null space of (ucy)* is given by,

N ((ucy)*) = {f el?: > f(m)=0 for eachnin s(u)} where Ay = {m e s(u) : ¢g(m) = n}.

meA,
Proof: Suppose that f belongs to N ((ucy*), then (ucg)* () = 0. Assume that
f= > f(m)y,. Then (uc)* ()= D u(m)f(m)yz,, by theorem 4.
meN meN
= Z[ZU(m)f(m)mm,} = > {ZU(m)f(m)}Xn
meN| meA, meg(N) | meA,
since (ucy)* (f) =0, we get > u(m)f(m) =0 fornin #(N).But > u(m)f(m)=0 foreachn
mehA, mehA,
in #(N) . Thus we get > f(m)=0 for each n e s(u).
meA,
Conversely suppose that f belongs to I such that Y f (m) =0 for each n in s(u).
meA,

Then from the expression (u cy)*(f) = Z {me (m)} Jn

meg(N) | meA,
It follows easily that (ucy)*(f) = 0. Therefore f belongs to N ((ucy)*) =

Theorem 6: Suppose ue |” is bounded away from zero and (uc,) be a weighted composition operator on
I°. Then the range space of (ucy)* is given by,

R((uc)*) ={f eI? 1 f/N—g(N) =0}.
Proof: Suppose f belongs to R ((uc,)*). Then there exists a function g in I° for each
(uc,)* (9) = f. Suppose g = > g(n) 7, - Then (ucy)* (@) = SU(n) 9(N) 40y
It follows that for m belongsto N — ¢ (N), (ucg)* (g) (m) =0
Therefore f (m) =0 foreachm € N — ¢ (N)
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Conversely assume that f € IPand f (m) = 0 foreachm € N — ¢ (N). We need to show that f e R
((ucy)*). We have N = UArl ,where Ay={m e N : ¢(m) =n}.
neg(N)

We notice that for n € ¢ (N), each A, is non empty finite subset of N. Let Xn denote the number
of elements in A,. Let

© f(n)
g= Z — = Im
¢(nr:1:in u(n) An
Then SJg(m)’ = 3 {Z|g(m)|2} oy |y
meN neg(N) | meA, neg(N) | mea,U(N) An
R L N R O]

n— 2= =
neg(N) ‘u(n)‘ An? ne¢<N)‘u(n)‘2 An

f(n)° =
< | ( )|2 < oo (since An >1foreachn e ¢ (N)andue 1)

neg(N) ‘m‘
Hence g belongs to I°. Now we shall show that (ucy)* (g) = f. We have,
= u(n) f(n f(n
eyt @= 3 MW > {Zézﬂm)}

m=1 U(n) Zn neg(N)| meA, An
$(m)=n

=2 an%\—n)l(n)} = > f(N)yy =f(since f IN-g(N)=0) =

neg(N) neg(N)

Corollary: The range space R((ucy)*) is a closed subspace of I°.

Proof: Let (f,)7, be a sequence in R((ucy)*) for each (f,)

, converges to f in I°. Since

f./N—@(N) =0 and converges in I° implies pointwise convergence, it follows that the limit
function f=00on N—¢@(N). Thus f e R((ucy)*). Hence R((uc,)*) is a closed subspace of I°.

Theorem 7: Suppose ue |~ is bounded away from zero and (uc,) be a weighted composition operator on

I’. Then the adjoint (ucy)* of weighted composition operator (uc,) is one to one if and only if ¢ is
one to one.

Proof: Suppose (ucy)* is a one to one. We need to show that ¢ is one to one. For n and min N. ¢(n) = ¢(m)

= Xin) = Xom) = (UCH™ (1) = (UCH™ (xm) = 1 = xm (Since (ucy)™* is one to one) = n=m
= ¢is one to one.
Conversely assume that ¢ is one to one. We need to show that (uc,)* is one to one.
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For f = > f(n)y, and g = > g(n)g, in P (uc)* () = (ucy)* (g). This implies that
= n=1

S u()f () zm = 2u(n)g(n)zm - Thus f (n) = g (n) for each n N because ¢ s one to one.
n=1 n=1

Therefore f = g. Hence (ucy)* is one to one. =
Theorem 8: Suppose u e I” is bounded away from zero and (uc,) is a weighted composition operator on IP.
Then the adjoint (ucy)* of a weighted composition operator (ucy) is onto if and only if ¢ is onto.
Proof: Suppose (ucy)* is onto. We need to show that ¢ is onto. Let m be any natural number, then ym e I°.

Since (uc,)* is onto, there is a function f= > f(n), in I° such that

(ue)* () = m ie. Zu)f(N)xyen) = 2m

There is a natural number n for each ¢(n) = m. Hence ¢ is onto.

Conversely assume that ¢ is onto. We need to show that (ucg)* is onto. Let g = Z glm ;(m be
m=1

any function in I°. Since ¢ is onto for each m in N, An = ¢(m) is non-empty. Let P be a set

consisting of precisely one number from each of the sets A, for m in N. Let f =

g(m)
==y .Th
% mgn en

neP,g(n)=m
M= Y um 7—3 zm > 9(m
meN meN
neP,g(n)=m
Hence (ucy)* is onto. .
Corollary: Suppose ue |17 is bounded away from zero then (ucy)* is invertible if and only if
¢ is invertible.

Proof: Proof follows from theorem 7 and 8.
Theorem 9: Suppose u e 1”is bounded away from zero. Then the adjoint (uc,4)* of a weighted
composition operator (ucy) is a weighted composition operator if and only if ¢ is
one to one and onto.
Proof: Suppose ¢ is one to one and onto. We need to show that adjoint (uc,)* is a Weighted composition
operator. We have to find a function w on N into itself such that

(ucy)* (f) = uc, (f) for each fin I”
Let w = ¢* (since ¢ is one to one and onto). To show that (uc,)* = (u Cy), it is sufficient to show
that (ucg)™ (xn) = (uty) (1) for each n € s (u).
Thus we need to show that (ucg)* (xn) (M) = (UTy) (xn) (M).

fe. u(m) zuo (M) =Um) 7,1, (M)
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But v (n) = (1) (n) = ¢(n). Thus we have to show that u(m) yxm(m) = u’(M) yxn(m) which is
obviously true. Therefore (ucgs)* is a weighted composition operator and (ucy)* = ﬁc¢,l :

Conversely assume that (ucg)™* is a weighted composition operator. We need to show that ¢ is one

to one and onto and (ucy)* =GC¢_1. Since (ucy)* is a weighted composition operator there is a

function won N into itself for each (ucg)* = ut,. Therefore (ucy)* () = (ut,) (xn) for eachn e
S (u). Thus (ucg* (xn) (M) = (Uty) (xn) (M) for each m e N.

Therefore m X5 () (m) =u’(m) Z«//’l(n) (m).
gL (M = U7 (M) za(y(m)).. ... (1)

Let m = ¢(n) in egn. (1), then we get Wm)mn) (¢(n)) = u’ (M) xn (v (4(N))).
Therefore w (4(n)) =n,and u’(n) = m foreach n € s(u). Thus o ¢ = 1.

Hence u(m) y

Hence ¢ is one to one.
Again in the equation (1) we put n = w(m), we get x4y my(m) = %y m (w (m))
Thus we get ¢(w (m)) = m. Therefore g0y = 1. Hence ¢ is onto.

Thus ¢ is one to one and onto. .
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